US009465632B2

United States Patent

(12) (10) Patent No.: US 9,465,632 B2
Ebcioglu et al. 45) Date of Patent: Oct. 11, 2016
(54) PARALLEL HARDWARE HYPERVISOR FOR 7,734,894 Bl . 6/2010 Wentzlaff
VIRTUALIZING APPLICATION-SPECIFIC 7,734,895 BL* 62010 Agarwal .oooooooov GOGE 8782
SUPERCOMPUTERS 7761687 B2 7/2010 Blumrich et al
. 7,814,486 B2 10/2010 Papakipos et al.
(75) Inventors: Kemal Ebcioglu, Katonah, NY (US); 7,882,307 B1* 2/2011 Wentzlaff GOGF 12/0813
Atakan Dogan, Eskisehir (TR); Reha 711/119
Oguz Altug, Eskisheir (TR); Mikko 8,020,163 B2* 9/2011 Nollet et al. 718/104
A 1) 8,458,717 B1* 6/2013 Keagy etal.cccc....... 718/104
Herman Lipasti, Lake Mills, WI (US): 2003/0005068 Al 1/2003 Nickel et al.
Eray Ozkural, Ankara (TR) 2004/0049672 Al 3/2004 Nollet et al.
(73) Assignee: Global Supercomputing Corporation, (Continued)
Yorktown Heights, NY (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,. the term of this EP 1574965 AL 9/2005
patent is extended or adjusted under 35
U.S.C. 154(b) by 745 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/366,318 Brandon Beresini, Scott Ticketts, Michael Bedford Taylor, 2011
978-1-4577-0599-1/11 IEEE.*
(22) Filed: Feb. 4, 2012 .
(Continued)
(65) Prior Publication Data
US 2013/0205295 Al Aug. 8, 2013 Prlr.nary Examn?er— Lewis A Bullgck, Jr.
Assistant Examiner — Wynuel Aquino
(51) Imt.CL
GOGF 9/455 (2006.01) 67 ABSTRACT
GOG6F 15/78 (2006.01) A parallel hypervisor system for virtualizing application-
(52) US. CL specific supercomputers is disclosed. The hypervisor system
CPC GO6F 9/45533 (2013.01); GO6F 15/7871 comprises (a) at least one software-virtual hardware pair
(2013.01); Y02B 60/146 (2013.01); YO2B consisting of a software application, and an application-
60/148 (2013.01) specific virtual supercomputer for accelerating the said
(58) Field of Classification Search software application, wherein (i) The virtual supercomputer
USPC oo 718/1, 101, 102, 104, 106, 107 ~ contains one or more virtual tiles; and (ii) The software
See application file for complete search history. application and the virtual tiles communicate among them-
selves with messages; (b) One or more reconfigurable physi-
(56) References Cited cal tiles, wherein each virtual tile of each supercomputer can

U.S. PATENT DOCUMENTS

6,034,538 A 3/2000 Abramovici
6,826,615 B2 11/2004 Barrall et al.
7,409,670 Bl 8/2008 Pritchard et al.
7,555,566 B2 6/2009 Blumrich et al.
7,603,540 B2 10/2009 Doering et al.

be implemented on at least one physical tile, by configuring
the physical tile to perform the virtual tile’s function; and (c)
A scheduler implemented substantially in hardware, for
parallel pre-emptive scheduling of the virtual tiles on the
physical tiles.

16 Claims, 15 Drawing Sheets

statistics

.

allocation

Replacementle selection

Monitor

Flat, non-partitioned hardware design of the hypervisor

US 9,465,632 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0187756 Al* 7/2009 Nollet et al. 713/100
2009/0199177 Al* 8/2009 Edwards et al. . 718/1
2009/0282404 Al* 11/2009 Khandekar et al. . 718/1
2009/0287571 Al 11/2009 Fujioka

2010/0153966 Al 6/2010 Arimilli et al.

2011/0307663 Al 12/2011 Kultursay et al.

OTHER PUBLICATIONS

Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch,
“Run-time Partial Reconfiguration Speed Investigation and Archi-
tectural Design Space Exploration”, in Proceedings of the Interna-
tional Conference on Field Programmable Logic and Applications
2009 (FPL’09), Prague, Czech Republic, Aug. 2009.

Fabrizio Ferrandi, Marco D. Santambrogio, Donatella Sciuto, “A
Design Methodology for Dynamic Reconfiguration: The Caronte
Architecture,” ipdps, vol. 4, pp. 163b, 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05)—
Workshop 3, 2005.

Mateusz Majer, Juergen Teich, Ali Ahmadinia, and Christophe
Bobda. 2007. The Erlangen Slot Machine: A Dynamically
Reconfigurable FPGA-based Computer. J. VLSI Signal Process.
Syst. 47, 1 (Apr. 2007), 15-31. DOI=10.1007/s11265-006-0017-6
http://dx.doi.org/10.1007/s11265-006-0017-6.

Chun-Hsian Huang and Pao-Ann Hsiung, “Software-Controlled
Dynamically Swappable Hardware Design in Partially
Reconfigurable Systems,” EURASIP Journal on Embedded Sys-
tems, vol. 2008, pp. 1-11, 2008, doi:10.1155/2008/231940.
Vincenzo Rana, Marco Santambrogio, Donatella Sciuto, Boris
Kettelhoit, Markus Koester, Mario Porrmann, Ulrich Ruckert, “Par-
tial Dynamic Reconfiguration in a Multi-FPGA Clustered Architec-
ture Based on Linux,” ipdps, pp. 173, 2007 IEEE International
Parallel and Distributed Processing Symposium, 2007.

Klaus Danne and Marco Platzner. Periodic real-time scheduling for
FPGA computers. Third IEEE International Workshop on Intelligent
Solutions in Embedded Systems (WISES’05), Hamburg University
of Technology, May 2005. http://dx.doi.org/10.1109/WISES.2005.
1438720.

H. Simmler and L. Levinson and R. Ménner. Multitasking on FPGA
Coprocessors. Proceedings of the 10th International Workshop on
Field Programmable Gate Arrays (FPL). pp. 121-130. 2000.
Springer.

Miljan Vuletic, Laura Pozzi, and Paolo Ienne. 2005. Seamless
Hardware-Software Integration in Reconfigurable Computing Sys-
tems. IEEE Design and Test of Computers, vol. 22, No. 2 (Mar.
2005), pp. 102-113. DOI=10.1109/MDT.2005.44 http://dx.doi.org/
10.1109/MDT.2005.44.

Hayden Kwok-Hay So, Artem Tkachenko, Robert Brodersen. “A
Unified Hardware/Software Runtime Environment for FPGA-Based
Reconfigurable Computers using BORPH”. Proceedings of the 4th
International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, 259-264, 2006.

Eray Ozkural, A two-dimensional ISA, service invention report,
Erendiz Superbilgisayar Ltd., Eskisehir, Turkey, Jan. 6, 2009.
Co-owned, co-pending U.S. Appl. No. 13/296,232, filed Nov. 15,
2011, Ebcioglu et al., Method and system for converting a single-
threaded software program into an application-specific supercom-
puter.

Nishida, Kenji, Toda, Kenji, Shimada, Toshio, Yamaguchi,
Yoshinori. “The Hardware Architecture of the CODA Real-Time
Processor”, Proceedings of PARCO 93, Parallel Computing: Trends
and Applications, G.R. Joubert, D. Trystram, F.J. Peters, D.J. Evans
(editors), 1994 Elsevier Science B.V. http://dx.doi.org/10.1016/
0743-7315(92)90106-W.

Nishida, Kenji, Toda, Kenji, Takahashi, Eiichi, Yamaguchi,
Yoshinori. “An Architecture of the Real-Time Parallel Processor
CODA,,” Journal of Institute of Electronics, Information and Com-
munication Engineers, vol. J78-D-I No. 8, Aug. 1995, pp. 777-787.
Marescaux, T., Nollet, V., Mignolet, J.Y., Bartic, A., Moffat, W.,
Avasarc, P, Coene, P, Verkest, D., Vernalde, S., Lauwereins, R..
“Run-time support for heterogenous multitasking on reconfigurable
SoCs” Integration, The VLSI Journal, North-Holland Publishing
Company. Amsterdam, NL, vol. 38, No. 1, Oct. 1, 2004, pp.
107-130. North Holland. XP004641567. ISSN: 9167-9260. DOI:
10.1016/J.VLSI.2004.03.002.

Japan Patent Office, First Office Action for application JP 2014-
555553, Nov. 26, 2015. From PCT version of present application
PCT/US2012/072200.

European Patent Office, Supplementary Partial European Search
Report for application EP 12867516.2, Nov. 27, 2015. From PCT
version of present application PCT/US2012/072200.

Shimada, Toshio, Toda, Kenji, Nishida, Kenji. Real-Time Parallel
Architecture for Sensor Fusion Journal of Parallel and Distributed
Computing 15, 143-152 (1992) http://dx.doi.org/10.1016/0743-
7315(92)90106-W.

Nishida, Kenji, Toda, Kenji, Shimada, Toshio, Yamaguchi,
Yoshinon. “The Hardware Architecture of the CODA Real-Time
Processor”, Proceedings of PARCO 93, Parallel Computing: Trends
and Applications, G.R. Joubert, D. Trystram, F.J. Peters, D.J. Evans
(editors), 1994 Elsevier Science B.V.

European Patent Office, Extended European Search Report dated
Apr. 29, 2016 for application EP12867516 PCT/US2012072200,
claiming priority of U.S. Appl. No. 13/366,318.

Marescaux T et al: “Networks on Chip as Hardware Components of
an OS for Reconfigurable Systems” International Conference on
Field-Programmable Logic, FPL 2003, Lecture Notes in Computer
Science, vol. 2778, Sep. 1, 2003 (Sep. 1, 2003), pp. 595-605,
XP002319855, ISBN: 978-3-540-45234-8.

Rosti E et al: “Robust partitioning policies of multiprocessor
systems”, Performance Evaluation, Amsterdam, NL, vol. 19, No.
2-3, Mar. 1994 (Mar. 1994), pp. 141-165, XP026655278, ISSN:
0166-5316, DOI: 10.1016/0166-5316 (94)90037-X.

Japan Patent Office, “Decision to Grant a Patent” dated May 24,
2016 for application JP 2014-555553 PCT/US2012072200 claiming
priority of U.S. Appl. No. 13/366,318.

* cited by examiner

U.S. Patent Oct. 11, 2016

Host
system
running
application
A
PciE
A,
Virtual
supercomputer
foraccelerating
A
AO

A

Sheet 1 of 15 US 9,465,632 B2
Host
system
running
application
B
PciE
B,
Virtual
supercomputer
foraccelerating
B
Bo

FIG1 Two softwarc application, cach accclerated by an application-specific virtual
supercomputer (illustrative small example)

U.S. Patent Oct. 11, 2016 Sheet 2 of 15 US 9,465,632 B2

1. Initial state

To host To host
running running
A B
PciE PcikE
Physical
tiles
Po: P, P,: Ps:
A B, empty empty
virtual->
physical
tile
L1 empty empty empty empty
caches
< _ communication network I

One ownerforeach partition of virtual tiles

Ownery: Owner;:

A.1i P sharers={} B.: P, sharers={}
Ay A

By:

Monitor:

FIG 2 An example of the operation of the hypervisor, part 1 of 8

U.S. Patent Oct. 11, 2016 Sheet 3 of 15 US 9,465,632 B2

2. A, (P,) sends message to A,(not mapped)
Cache miss handled by owner;.

A, allocated in empty tile P, by owner,
(A,—>P,) cached in P,

P, recorded as a sharer of

To host To hQSt (A,—>P,) mapping within owner,.
running running
A B
PcikE PciE
Physical
tiles
Po: Py P,: Ps:
A, By Ao empty
virtual->
physical
tile
Ll Ay Py empty empty empty
caches
< communication network I
Ownero:h Owner,:
A.: Po sharers={} B ,: P, sharers={}
Ay: P, sharers={P,} A
Bo: !
Monitor:
P, is LRU

FIG 3 Anexample of the operation of the hypervisor, part 2 of 8

U.S. Patent Oct. 11, 2016 Sheet 4 of 15 US 9,465,632 B2

3. Ay(P,) sends message to A_;(P;)
Cache miss handled by owner,.
(A_,—P;) cached in P,

P, recorded as a sharer of
(A_;—P¢) mapping within owner,.

To host To host
running running
A B
PciE PcikE
Physical
tiles
PO: Pl: Pz: P3:
A, B A, empty
virtual->
physical
tile
Lt Ag: Py empty APy empty
caches
< communication network i
Ownero: Owner;:
A_;: P, sharers={P,} B.,: P, sharers={}
A,: P, sharers={P,} A
Bo: '

Monitor:

FIG 4 Anexample of the operation of the hypervisor, part 3 of 8

U.S. Patent Oct. 11, 2016

Sheet 5 of 15 US 9,465,632 B2

4. A_; (Py) sends message to Ay(P,)
Cache hit, no changes

To host Tohost
running running
A B
PciE PciE
Physical
tiles
Po: P,: P, Ps:
A,y B.1 Ao empty
virtual->
physical
tile
Ly Ay Py empty AP empty
caches
< communication network >
Ownery: Owner;:
A_: P, sharers={P,} B.,: P, sharers={}
A,: P, sharers={P.} A
Bo: -

Monitor:

FIG S An example of the operation of the hypervisor, part 4 ol §

U.S. Patent

Oct. 11, 2016

Sheet 6 of 15 US 9,465,632 B2

5. Ay (P;) sends message to A; (not mapped)
Cache miss handled by owner;

A, allocated in empty tile P; by owner;
(A;—P3;) cached in P,

P, recorded as a sharer of

To host To hQSt (A;—P3) mapping within owner;.
running running
A B
PcikE PciE
Physical
tiles
Po: Py: P,: P;:
A, B, A A,
virtual->
physical
tile A.:P
L1l Ay P, empty A'l, P° empty
1. F3
caches
< communication network -
Owner:

BO-

A_;: P, sharers={P,}
Ay P, sharers={P,}

Owner;:

B_;: Py sharers={}
A;: P;sharers={P,}

Monitor:
P;is LRU

FIG 6 An example of the operation of the hypervisor, part 5 of 8

U.S. Patent Oct. 11, 2016 Sheet 7 of 15 US 9,465,632 B2

6. A, (P;) sends message to Ay (P,)
Cache miss handled by owner,

A, already allocated in P,
(A,—P;) is cached in P,

P; recorded as a sharer of

To host To hQSt (A,—P,) mapping within owner,.
running running
A B
PcikE PciE
Physical
tiles
Po: Pl: Pz: P3:
A-l B-l AO A]_
virtual->
physical
tile A.:P
Ll Ay P, empty e Aq: P,
A, P2
caches
< communication network >
2wnpero:h b Ownery:
A_l.P 0 Sh arers—{Pz}P B_,: P, sharers={}
o P, sharers={Py P} A,: P;sharers={P,}
By:
Monitor:

FIG 7 An cxample of the opcration of the hypervisor, part 6 of 8

U.S. Patent Oct. 11, 2016 Sheet 8 of 15 US 9,465,632 B2

7. B_.;(P;) sends message to By(not mapped)
Cache miss handled by owner,

P; containing A; is chosen for pre-empting
Owner, asks owner; to undo (A;—P3) map
(A;—P3) entry in P, is deleted

To host To hQSt A, state in P; is saved in storage
running running a, becomes unmapped in owner;
A B P, becomes empty
PciE PciE
Physical
tiles
Py: Py: P,: Ps:
Ay B, Ao empty
virtual->
physical
tile
L1 AO: P2 empty A-l: Po Ao. P2
caches
< __ communication network >
gwnpero.h b Owner,:
: rers=
1 Po sharers={P,} B_,: P, sharers={}
A,: P, sharers={P,,Ps} A
Bo:
Monitor:
P, is LRU

FIG 8 An example of the operation of the hypervisor, part 7 of 8

U.S. Patent Oct. 11, 2016 Sheet 9 of 15 US 9,465,632 B2

8. B_; (P;) sends message to Bj(not mapped)
(continued)

By allocated in empty tile P; by ownery
(Bg—P3) cached in P,

P, recorded as a sharer of

To host To hO_St (By—P;) mapping within owner,.
running running
A B
PciE PciE
Physical
tiles
virtual->
physical
tile
L1l Ag: P, By: P; A;: Py Ay: Py
caches
< communication network >
gwnpero:h b Owner,:
17 Po sharers={P,} B_;: P, sharers={}
A,: P, sharers={P,,Ps} A,
B,: P; sharers={P,}

Monitor:

FIG9 Anexample of the operation of the hypervisor, part 8 of 8

U.S. Patent Oct. 11, 2016 Sheet 10 of 15

Legend for schematics

D Component

External
communication
device

DL Master port of
component

57 Slave port of
component

FIG 10 Legend for schematic symbols

US 9,465,632 B2

U.S. Patent Oct. 11, 2016 Sheet 11 of 15 US 9,465,632 B2
< statistics T
= C
PO [(X X} PN'l

pre M
control () pre
communication
mL_M

M
0

allocation K
_I deallocation

_MI PH 0 I_MI PH N-1 ﬁ
& ___communication___>
control
(. lookup 2
M o0
|m| Owner m| Owner
0 M-1
M M

Monitor

& Replacementtile selection >

FIG 11 Flat, non-partitioned hardware design of the hypervisor

U.S. Patent Oct. 11, 2016 Sheet 12 of 15 US 9,465,632 B2

||
< statistics —
o ="
PA L XY PD
pre M [
control() pre (
M| | communication M
m PH, |:M = PHp |5
—— ml 10
communication
c
(0]
I -
C control > ;
M r
o
configuration memory |
I
’\I lookup _——>— f

allocation

deallocation M
MI_I
|

& replacementtile selection >

Monitor I_

A

FIG 12 Hardware design of the hypervisor after partitioning and chip unioning (cloud
building block chip)

U.S. Patent Oct. 11, 2016 Sheet 13 of 15 US 9,465,632 B2

to attached
physical Inbound
tile T communication
FSM
communication :
Outbound |, m t_o physical
communication €= Ele
response FSM arnesses
to attached M
. communication
{?lhySICGJ outstanding
e ByDest,
outstanding
BySource
M
outbound pre- to 9Wﬂer
communication Outbound units
N 12 M
communication
requestFSM Im
M lookup
to attached
physical B
tile lockedDest,
I— lockedSource
to owner
units
M
pre- MI
control
Control control
Ml Fsm

Physical tile harness

FIG 13 Internal organization of a physical tile harness

U.S. Patent Oct. 11, 2016 Sheet 14 of 15 US 9,465,632 B2

to other
owner
lookup | units
Lookup allocation
. M FSM M deallocation
to physical
tile
h M
arnesses .
replacement tile
selection
to monitor
unit
ptile,
priorPtile,
sharers
maps
Allocation
il deallocation v control
FSM
to physical
Owner unit tile
harnesses

FIG 14 Internal organization of an owner unit

U.S. Patent Oct. 11, 2016 Sheet 15 of 15 US 9,465,632 B2

replacement
tile
selection

to owner
units

N\ Monitor
(statlstlcs/ oy

; ;

to physical
tiles

blink, flink,
vtile,
working,
isfree
arrays

Monitor unit

FIG 15 Internal organization of the monitor unit

1

US 9,465,632 B2

PARALLEL HARDWARE HYPERVISOR FOR
VIRTUALIZING APPLICATION-SPECIFIC
SUPERCOMPUTERS

REFERENCES CITED

Related Co-Pending, Co-Owned US Patent

2

International Symposium on Computer Architecture. St.
Malo, France. ACM Press. June 2010.

[3] Wikipedia article. Cloud Computing. http://en.wikipedi-
a.org/wiki/Cloud_computing. Retrieved November 2011.

[4] VmWare. Virtualization Overview White Paper. 2006.
http://www.vmware.com/pdf/virtualization.pdf

[5] 1. Held, J. Bautista, Sean Koehl. “From a Few Cores to

Applications Many: A Tera-scale Computing Research Review,” Intel
US non-provisional
patent application
no. Date Filed Title Inventors Assignee
13/156,881 Jun. 9, 2011 Storage unsharing Kultursay Global
et al. Supercomputing
Corporation
13/296,232 Nowv. 15, 2011 Method and system for Ebcioglu = Global
(referred to in this converting a single- et al. Supercomputing
document as threaded software Corporation
[Supercomputer]) program into an
application-specific
supercomputer
US Patents
U.S. Pat. No. Issue Date Title Inventors Assignee
6,826,615 B2 Nov. 09, 2004 Apparatus and method for Barrall et BlueArc UK
hardware implementation or al. Limited
acceleration of operating
system functions
7,603,540 B2 Oct. 13,2009 Using field-programmable Doering et International
gate array (FPGA) al. Business
technology with a Machines
microprocessor for Corporation
reconfigurable, instruction
level hardware acceleration
7,409,670 Bl Aug. 5, 2008 Scheduling logic on a Pritchard et Altera
programmable device al. Corporation
implemented using a high-
level language
7,555,566 B2 Jun. 30, 2009 Massively parallel Blumrich et International
supercomputer al. Business
Machines
Corporation
7,761,687 B2 Jul. 20, 2010 Ultrascalable petaflop Blumrich et International
parallel supercomputer al. Business
Machines
Corporation
US patent Published System and method for Nollet et al.
application Mar. 11, 2004 hardware software
2004/0049672 multitasking on a
Al reconfigurable platform
8,020,163 B2 Sep. 13,2011 Heterogenous multiprocessor Nollet et al. IMEC, Xilinx,
network-on-chip devices, Inc.
methods and operating
systems for control thereof
6,034,538 Mar. 7, 2000 Virtual logic for Abramovici Lucent
reconfigurable hardware Technologies
Inc.

[1] R. J. Creasy, “The origin of the VM/370 time-sharing

Other Publications

system”, IBM Journal of Research & Development, Vol.
25, No. 5 (September 1981), pp. 483-90. http://www.re-
search.ibm.com/journal/rd/255/ibmrd2505M.pdf

[2] Geoffrey Blake, Ronald G. Dreslinski, Krisztian Flaut-

ner, Trevor Mudge. Evolution of thread-level parallelism
in desktop applications. Proceedings of the 37% Annual

White Paper, 2006. http://download.intel.com/research/
platform/terascale/terascale_overview_paper.pdf

60 [6] P. N. Glaskowsky, “NVDIA’s Fermi: The First Complete

GPU Computing Architecture,” NVDIA White Paper,
2009. http://www.nvidia.com/content/PDF/fermi_
white_papers/P.Glaskowsky_NVIDIA’s_Fermi-The_
First_Complete_GPU_Architecture.pdf

65 [7] The Convey HC-1 Computer Architecture Overview,

Convey White Paper, 2008. http://www.conveycomputer.
com/Resources/ConveyArchitecture WhiteP.pdf

US 9,465,632 B2

3

[8] SGI-RASC RC100 Blade, SGI Data Sheet, 2006.

[9] Partial Reconfiguration User Guide. Xilinx, 2011. http://
www.xilinx.com/support/documentation/sw_manuals/
xilinx13_1/ug702.pdf

[10] M. Liu, W. Kuehn, Z. Lu, A. Jantsch, “Run-time Partial
Reconfiguration Speed Investigation and Architectural
Design Space Exploration,” International Conference on
Field Programmable Logic and Applications, 2009.

[11] F. Ferrandi, M. D. Santambrogio, D. Sciuto, “4 Design
Methodology for Dynamic Reconfiguration: the Caronte
Architecture,” International Parallel and Distributed Pro-
cessing Symposium, p. 4, 2005.

[12] M. Majer, J. Teich, A. Ahmadinia, Christophe Bobda,
“The Erlangen Slot Machine: A Dynamically Reconfigu-
rable FPGA-Based Computer,” Journal of VLSI Signal
Processing 47, 15-31, 2007.

[13] H. Simmler, L. Levinson, R. Manner, “Multitasking on
FPGA Coprocessors,” Lecture Notes in Computer Sci-
ence, vol. 1896, pp. 121-130, 2000.

[14] C.-H. Huang, P.-A. Hsiung, “Sofiware-Controlled
Dynamically Swappable Hardware Design in Partially
Reconfigurable Systems,” EURASIP Journal on Embed-
ded Systems, vol. 2008, pp. 1-11, 2008.

[15] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M.
Koester, M. Porrmann, U. Rickert, “Partial Dynamic
Reconfiguration in a Multi-FPGA Clustered Architecture
Based on Linux,” International Parallel and Distributed
Processing Symposium, 2007.

[16] Klaus Danne and Marco Platzner. Periodic real-time
scheduling for FPGA computers. Third International
Workshop on Intelligent Solutions in Embedded Systems.
2005. http://dx.doi.org/10.1109/WISES.2005.1438720

[17] H. Simmler and L. Levinson and R. Manner. Multi-
tasking on FPGA Coprocessors. Proceedings of the 10th
International Workshop on Field Programmable Gate
Arrays (FPL). Pp. 121-130. 2000. Springer.

[18] M. Vuletic, L. Pozzi, P. lenne, “Seamless Hardware-
Software Integration in Reconfigurable Computing Sys-
tems,” IEEE Design and Test of Computers, vol. 22, no.
2, pp. 102-113, 2005.

[19] H. K.-H. So, A. Tkachenko, R. Brodersen, “4 Unified
Hardware/Software Runtime FEnvironment for FPGA-
Based Reconfigurable Computers Using BORPH,” Inter-
national Conference on Hardware-Software Codesign and
System Synthesis, pp. 259-264, 2006.

[20] J. Duato, S. Yalamanchili, L.. M. Ni. Interconnection
Networks: An Engineering Approach. IEEE Press, 1997.

[21] Lynn Conway. The M.I.T. 1978 VLSI System Design
Course. http://ai.eecs.umich.edu/people/conway/VLSI/
MIT78/MIT78.pdf

[22] Wikipedia article. Multi-project wafer service. http://
en.wikipedia.org/wiki/Multi-project_wafer_service

[23] Ilija Hadzic and Sanjay Udani and Jonathan M. Smith.
FPGA Viruses. In 9th International Workshop on Field
Programmable Logic and Applications. 1999, pp. 291-
300, Springer-Verlag. http://citeseerx.ist.psu.edu/view-
doc/summary?doi=10.1.1.43.9135

FIELD OF THE INVENTION

The invention relates to a parallel hardware hypervisor
system for virtualizing application-specific supercomputers.

BACKGROUND OF THE INVENTION

Maturity of Processor Architecture Research:
The general-purpose processor architecture research field
has matured, with attempts to further increase the perfor-

10

15

20

25

30

35

40

45

50

55

60

65

4

mance of general-purpose processors presently encountering
(1) frequency, (ii) power, (iii) design complexity, and (iv)
memory wall barriers. However, the need for increased
performance and reduced power continues to exist.

Difficulty of Parallel Programming:

Abandoning the extremely convenient, easy-to-use
sequential programming model and programming explicitly
for parallel processors constitute one way for increasing
performance. Recent multi-core processor architectures [5]
that are enabled by increasing VLSI densities indeed encour-
age this approach. However, programming a parallel multi-
core processor system is not a natural and easy task, due to,
e.g., race conditions, deadlocks, and non-deterministic bugs
that are hard to track. Increased parallelism in general-
purpose processors has in fact increased the difficulty of
programming and using them [2].

Inefficiencies of the Hypervisor and the Operating Sys-
tem:

Sharing of computing resources among different indepen-
dent applications and virtual machines has been emphasized
at least since the days of early mainframes [1]. This empha-
sis on resource sharing continues to this day. Recently,
Cloud Computing [3] and Virtualization [4] have emerged as
preferred methods of offering computing and application
services with resource sharing. By breaking the barriers of
the traditional in-house IT shop approach, cloud computing
offers centralized high performance computing resources,
economies of scale, and radically higher degrees of effi-
ciency. For example, a large cloud computing data center,
along with a fast and reliable encrypted network, can greatly
amplify the performance of an inexpensive client device,
while preserving the security properties of an in-house 1T
shop.

However, cloud computing today relies on operating
systems or hypervisors that are designed in software, and
that lack scalability. For example, the cost of an interrupt
may involve substantial overhead (e.g., ten thousand instruc-
tions) in today’s operating systems. Moreover, the transition
between privilege levels (as in an interrupt or system call)
requires a global serialization/pipeline flush in general-
purpose processors. The schedulers within operating sys-
tems and hypervisors alike are not designed in an algorith-
mically parallel scalable way, to handle massively parallel
systems. At the extreme performance levels that will be
needed in the future, such serialization overheads will
become important. To alleviate the severe performance
slowdown consequences of Amdahl’s law, the slowdown
effects due to both the OS and the hypervisor must be
reduced.

Prevailing Solutions:

Current computer industry focus areas include two pre-
vailing approaches, namely: energy-efficient multi-core pro-
cessors [5] and hybrid computing architectures [6], which,
while not directly addressing the significant problems men-
tioned above (namely, the difficulty of parallel program-
ming, and the inefficiency of the OS and hypervisor), do
promise to increase performance and to reduce power. We
will review the hybrid computing architectures, since they
are most relevant to application-specific supercomputers, the
subject of the present document.

In general-purpose hybrid computing architectures, the
acceleration unit consists of graphics processing units
(GPUs) with their own specialized Instruction Set Architec-
ture [6]. These acceleration units are capable of accelerating
graphics applications, as well as a range of additional high
performance computing applications, provided that suitable
parts of the applications are re-coded to expose explicit

US 9,465,632 B2

5

parallelism and to take advantage of the massively parallel
architecture of specialized processors.

By contrast, reconfigurable hybrid computing architec-
tures (reconfigurable computers) deploy field programmable
gate arrays (FPGAs) as the acceleration unit, and offer more
flexibility. Typically, a collection of one or more FPGAs acts
as a co-processor to each general-purpose host processor [7]
[8]. While arbitrary code in general cannot take advantage of
the FPGAs using today’s tools, suitable code fragments can
again be recoded to expose explicit parallelism and then
compiled with a high-level tool to run on the FPGAs.

Even though the commercial systems with FPGAs are
very promising in boosting the application performance with
less power than traditional servers, they suffer from a few
shortcomings:

Lack of scalable pre-emptive scheduling: Many of today’s
reconfigurable computer systems do not implement
pre-emptive scheduling of accelerators: they instead
allow a hardware accelerator to keep its share of
hardware resources as long as it runs. As a conse-
quence, even when an accelerator is idle, e.g., waiting
for an input, it occupies hardware resources until it
finishes. This potentially leads to the underutilization of
the system. Where pre-emptive hardware task sched-
uling is indeed done [15][16][17], it is done in a
non-scalable way, with software involvement. Existing
pre-emptive schedulers may also impose restrictions on
inter-task communication, for example, task depen-
dences may be in the form of a DAG (Directed Acyclic
Graph) [U.S. Pat. No. 6,034,538].

Lack of scalability of hardware-accelerated applications:
Today’s software and hardware design tools do not
virtualize application-specific, custom hardware accel-
erators at the supercomputer scale.

Low programmer productivity: Using a reconfigurable
hardware platform is complex at present, because of the
general difficulty of parallel programming, mentioned
earlier, and the general difficulty of hardware design
with today’s tools.

Missing semi-reconfigurable ASICs: An FPGA is an inter-
preter of arbitrary circuits specified at the Register
Transfer Level, and is therefore very flexible and
general, while an ASIC implementation of a given RTL
circuit is in fact a compiled version of that circuit,
which has performance and power advantages over the
corresponding FPGA implementation. To benefit from
the lower power and higher performance advantages of
an ASIC within a reconfigurable system, a systematic
solution to utilize ASICs for application acceleration
(beyond the solution of implementing only one func-
tion on a given kind of ASIC) is desirable. The existing
reconfigurable computer systems do not systematically
support application-specific integrated circuits (ASICs)
in addition to FPGAs, as a source of hardware accel-
eration.

Our Approach:

The present document’s system does address the two
significant problems (difficulty of parallel programming,
inefficiency of the OS and hypervisor) mentioned above. It
also distinguishes itself from the cited art in at least the
following ways:

Scalable pre-emptive Scheduling: The present docu-
ment’s system introduces a scalable parallel hardware
hypervisor system, where the hypervisor functions
related to the allocation, de-allocation, and relocation
of hardware supercomputing tasks with unrestricted
inter-task communication, are achieved with parallel

10

15

20

25

40

45

55

6

algorithms implemented in hardware. The resources
allocated to a virtual application-specific supercom-
puter can increase or decrease on demand, at the virtual
tile granularity. The parallel implementation of such
hypervisor functions is a difficult problem, giving rise
to several race conditions, which have been addressed
in the present document.

Scalability of hardware-accelerated applications: The
present document’s system virtualizes application-spe-
cific, custom hardware accelerators at the supercom-
puter scale.

Programmer productivity: The present document’s sys-
tem establishes a hardware acceleration programming
model and automated compilation method, which
achieves 100% compatibility between the original
single-threaded software application and the virtual
supercomputer created from it. This is a model that
allows better programmer productivity.

Semi-reconfigurable ASICs: The present document’s sys-
tem establishes a systematic method to create semi-
reconfigurable ASIC modules, allowing the same ASIC
module to realize multiple functions, while retaining
the ASIC advantages of lower power and/or higher
performance.

SUMMARY OF THE INVENTION

We describe a parallel hypervisor system for virtualizing
application-specific supercomputers, where the system com-
prises:

At least one software-virtual hardware pair consisting of

a software application, and an application-specific vir-

tual supercomputer for accelerating the said software

application, where:

The virtual supercomputer contains one or more virtual
tiles; and

The software application and the virtual tiles commu-
nicate among themselves with messages;

One or more reconfigurable physical tiles, wherein each
virtual tile of each virtual supercomputer can be imple-
mented on at least one physical tile, by configuring the
physical tile to perform the virtual tile’s function; and

A scheduler implemented substantially in hardware, for
parallel pre-emptive scheduling of the virtual tiles on
the physical tiles.

A virtual or physical tile contains arbitrary digital circuits.
The hypervisor system can be used to implement cloud
computing with software applications accelerated by appli-
cation-specific virtual supercomputers. Physical hardware
resources can be incrementally increased or decreased on-
demand for each application, at the physical tile granularity.
Features of the hypervisor system include:

A globally coherent virtual tile to physical tile map, which

is cached locally near each physical tile, allowing

the message source physical tile containing the mes-
sage source virtual tile
to send a message directly and efficiently to

the message destination physical tile containing the
message destination virtual tile whenever there is a
hit in the local virtual tile to physical tile cache near
the message source physical tile.

Scalable on-chip and cross-chip networks that allow mas-
sively parallel transmission of messages.

A compiler technique whereby an arbitrary code fragment
from a sequential software application can be converted
to a virtual application-specific supercomputer auto-
matically, for use within the hypervisor system.

US 9,465,632 B2

7

A semi-reconfigurable ASIC module, designed to realize
one among a finite number of virtual tiles with resource
sharing. The identity of the virtual tile is determined by
the contents of the configuration memory of the union
physical tile, which offers ASIC advantages within a
reconfigurable system.

Guaranteed isolation among the hardware-accelerated
applications belonging to different customers.

The hypervisor design avoids system-wide serialization
points, through the parallel handling of cache misses and
coherence actions within the local virtual tile to physical tile
caches described above, by using the following key hard-
ware units:

Multiple Owner Units:

the set of all virtual tiles in the system is partitioned, and
one owner unit is assigned to each partition. An owner unit
maintains the map from each virtual tile in its partition to a
physical tile (if the virtual tile is mapped) or to NULL (if the
virtual tile is not mapped). Using multiple owner units
simultaneously allows parallel, independent search and tile
pre-emption activities.

A monitor unit continuously obtains statistics about activ-
ity in the system. It then analyzes the statistics and provides
replies to requesting owner units, in a parallel manner, to
suggest a new physical tile to pre-empt to each owner unit,
according to a tile replacement policy.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 Illustrates a couple of software applications each
accelerated by a virtual supercomputer (small illustrative
example)

FIG. 2 Illustrates an
hypervisor. Step 1 of 8.

FIG. 3 Illustrates an
hypervisor. Step 2 of 8.

FIG. 4 Illustrates an
hypervisor. Step 3 of 8.

FIG. 5 Illustrates an
hypervisor. Step 4 of 8.

FIG. 6 Illustrates an
hypervisor. Step 5 of 8.

FIG. 7 Illustrates an
hypervisor. Step 6 of 8.

FIG. 8 Illustrates an
hypervisor. Step 7 of 8.

FIG. 9 Illustrates an
hypervisor. Step 8 of 8.

FIG. 10 Provides a legend for the symbols used in
hardware schematics of the present document.

FIG. 11 Illustrates the hardware design of the flat, non-
partitioned hypervisor.

FIG. 12 Ilustrates the hardware design of the hypervisor
after partitioning and chip unioning (cloud building block
chip).

FIG. 13 Illustrates the internal organization of a physical
tile harness.

FIG. 14 Illustrates the internal organization of an owner
unit.

FIG. 15 Tlustrates the internal organization of the monitor
unit.

example of the operation of the

example of the operation of the

example of the operation of the

example of the operation of the

example of the operation of the

example of the operation of the

example of the operation of the

example of the operation of the

DESCRIPTION OF THE PREFERRED
EMBODIMENT

We will now describe the details of a parallel hypervisor
system for virtualizing application-specific supercomputers,
where the system comprises:

10

20

25

30

35

40

45

50

55

60

8

At least one software-virtual hardware pair consisting of
a software application, and an application-specific vir-
tual supercomputer for accelerating the said software
application, where:

The virtual supercomputer contains one or more virtual
tiles; and

The software application and the virtual tiles commu-
nicate among themselves with messages;

One or more reconfigurable physical tiles, wherein each
virtual tile of each virtual supercomputer can be imple-
mented on at least one physical tile, by configuring the
physical tile to perform the virtual tile’s function; and

A scheduler implemented substantially in hardware, for
parallel pre-emptive scheduling of the virtual tiles on
the physical tiles.

The preferred embodiment of the hypervisor consists of

the following major parts:

The overall hardware structure of the hypervisor system
FPGA or ASIC chips containing one or more physical

tiles, on-chip network, owner unit and monitor com-
ponents

19 inch rack modules

19 inch racks each containing multiple rack modules

The whole reconfigurable system containing multiple
racks

An example illustrating the operation of the hypervisor

Primitive hardware building blocks of the hypervisor

Key hardware components of the hypervisor
The reconfigurable physical tile
The physical tile harness unit attached to each physical

tile for virtualizing the routing of incoming and
outgoing of messages

The owner units for implementing parallel searching of
the table mapping virtual tiles to physical tiles and
parallel pre-emption

The monitor unit for collecting statistics about the
system and suggesting physical tiles to pre-empt

Discussion of potential race conditions in the hypervi-
sor system and their solutions

This completes the description of the operation of the
baseline reconfigurable system and hypervisor.

Optimizations: We then describe various optimizations
and other applications of the hypervisor system.

The Overall Hardware Structure of the Hypervisor System

We will first describe the overall hardware structure of the

preferred embodiment of the hypervisor system. The hyper-
visor system is organized in hierarchical enclosures, very
much like a non-virtual (real) supercomputer. It comprises
the following, starting from the leaves of the hierarchy and
going towards the root:

An FPGA or ASIC chip (called a cloud building block
chip), containing several physical tiles, an owner unit,
possibly a monitor unit, and a number of internal
on-chip networks, with 1/O pins including
Optional PCI Express interface for communicating

with an attached host processor system;

DDRn interface to DRAM units (e.g., organized as
Dual Inline Memory Modules) on the same rack
module;

Several incomplete hypercube links implemented with
copper or optical high-speed serial communication
cables; and

Wide high speed busses connected to neighboring
FPGA/ASIC chips on the same rack module, with
differential signaling;

A rack module containing several cloud building block
chips and DRAM modules;

US 9,465,632 B2

9

19 inch racks each containing several rack modules;

The entire hypervisor system containing several 19 inch

racks.

“Incomplete hypercube” is used in the sense that the total
number of chips in the system need not be a power of two.
The total number of chips in the system can be any number
greater than or equal to one. Although we will stick to the
incomplete hypercube topology in this document, for sys-
tems with a very large number of chips, a cube-connected
cycles topology (where a communicating group of chips
serves a single hypercube node, therefore effectively
increasing the number of hypercube links of each node) can
be used.

An Example llustrating the Operation of the Hypervisor

To motivate the forthcoming detailed hardware descrip-
tion of the hypervisor system, we will start by describing the
operation of the hypervisor system on a small example. FIG.
1 illustrates two software applications running on traditional
commodity host microprocessor systems, which are each
accelerated by an application-specific virtual supercomputer
(small illustrative examples shown; typical virtual super-
computers will have many more virtual tiles). Each virtual
supercomputer comprises one or more virtual tiles that
communicate with messages among themselves and with the
software application. The objective of the hypervisor system
is to make each virtual tile believe it is communicating with
other virtual tiles of the same virtual supercomputer, as if
they were all part of a non-virtual supercomputer, while in
reality those virtual tiles which remain idle for some time
will likely be pre-empted by other virtual tiles that become
active.

When we say “cache” within the following text, we do not
mean a data cache or instruction cache. The caches of the
hypervisor system implement a mapping from virtual tiles to
physical tiles; they do not contain data. These caches help
speed up the transmission of messages within a virtual
supercomputer.

The key to fast sending of messages within the virtual
supercomputer is a set of globally coherent first level caches
mapping virtual tiles to physical tiles, such that there is a
cache present right next to each physical tile. Such a local
cache allows:

the message source physical tile pl containing the mes-

sage source virtual tile v1

to send a message directly to

the message destination physical tile p2 containing the

message destination virtual tile v2
very efficiently with a local first level cache access, by
adding only a few cycles to the latency, whenever the
mapping (v2—p2) is found in the local first level cache near
physical tile p1. The physical destination tile number “p2” is
added to the message at the time it leaves the physical tile
pl, which guides the message from the physical tile p1 to the
physical tile p2 within a scalable on-chip and cross-chip
network. p2 is in fact the destination port number of the
network, which makes routing simple, e.g., in a butterfly
network where each network stage makes a routing decision
based on the next bit of the destination port number. When
the message reaches the physical tile p2, the physical
destination tile number “p2” is deleted from the message,
and the original message that emanated from vl is recov-
ered. In this manner, the virtual tile v2, contained in the
physical tile p2, remains completely unaware of physical
tiles, and believes the message came from virtual tile v1. The
local first level caches containing (virtual tile—physical tile)
mappings are kept globally coherent and consistent with
each other.

25

40

45

55

10

The virtual tile numbered -1 is special within each virtual
supercomputer: it is used as a message exchange gateway to
the corresponding software application running on the host
processor system, which is reached via a PCI Express
connection. This virtual tile number -1 is permanently
pinned to a physical tile during the lifetime of the applica-
tion, for simplifying message routing.

Each (application, virtual supercomputer) pair in the
hypervisor system is assigned a unique application id num-
ber (e.g., 0x00=application A instance 0, Ox10=application
B instance 0, Ox11=application B instance 1, . . .).

As opposed to local virtual tile numbers, which are
integers in the range -1, 0, . . . , maximum virtual tile
number within the given virtual supercomputer, a global
virtual tile uniquely identifies any virtual tile within any
virtual supercomputer in the hypervisor system, and is a pair
(application id, local virtual tile number within this appli-
cation). In the following text, a virtual tile (when not
explicitly specified as a “local virtual tile” or “global virtual
tile”) will mean a global virtual tile.

FIG. 2, FIG. 3, FIG. 4, F1G. 5, F1G. 6, FIG. 7, FIG. 8, FIG.
9 describe the individual steps of the hypervisor when
virtual tiles of the small example virtual supercomputers
send messages to each other.

FIG. 2 shows the initial state of the system before any
messages are sent. Only the local virtual tiles numbered -1
within each virtual supercomputer have been mapped to
physical tiles, which are capable of exchanging messages
with the corresponding software application through a PCI
Express connection. All local first level caches near the
physical tiles are initially empty. In this example, the virtual
tiles have been partitioned into two groups, and these groups
have been assigned to owner units 0 (Owner,) and 1
(Owner,). Multiple owners units are used, so that searching
and pre-emption operations on virtual tiles in different
partitions can proceed independently, and in parallel. An
owner unit is responsible for maintaining a partition of a
table mapping each virtual tile to the physical tile containing
the virtual tile (if the virtual tile is currently mapped), or to
NULL @f virtual tile is not currently mapped). For each
virtual tile v that is mapped to a physical tile p, the owner
unit also keeps a list of sharers, i.e., the list of physical tiles
(other than p) that have locally cached the mapping (v—p).

The owner unit for a virtual tile is found by computing a
simple hash function of the virtual tile.

FIG. 3 shows the result when virtual tile A_, contained in
physical tile P, sends a message to virtual tile A,, which is
not yet contained in any physical tile. After the message
leaves P, its virtual destination tile A, is searched in the
local first level cache near P; but this cache is empty, and
hence a local first level cache miss occurs. The cache miss
is handled by owner, which is known to be responsible for
virtual tile A,. The monitor unit is a hardware unit which is
responsible for collecting statistics from each physical tile
and implementing a Least Recently Used tile replacement
policy in this example. Owner, asks the monitor unit to
provide the best physical tile to allocate A, in. The monitor
unit responds with P,, which is an empty tile. A, is then
allocated in P, by owner,, i.e., owner, reads the state and
configuration of virtual tile A, from hypervisor storage, and
reconfigures empty physical tile P, to realize virtual tile A,.
The mapping (A,—P,) is locally cached within P,. P, is also
added to the sharers list of the (A,—P,) mapping within the
owner,, unit. Now, a cache miss will no longer occur, and the
sending of the message from P, can continue from where it
left off. The destination physical tile P, is added to the
original message from virtual tile A_, to virtual tile A,.

US 9,465,632 B2

11

Thanks to the presence of the destination physical tile field,
the message finds its way from P, to P, through a scalable
communication network (e.g., a butterfly network) connect-
ing all physical tiles. When the message reaches the physical
tile P,, any extra fields in the message are deleted, and the
virtual tile A, contained in the physical tile P, receives the
original message, as sent by virtual tile A_,. Note that the
virtual tiles A_, and A, are unaware of any physical tiles,
they act as if the virtual tiles were real hardware tiles
connected by a real network. All these scheduling actions are
done completely through scalable parallel hardware, to be
described below, without requiring the assistance of a soft-
ware operating system or a software hypervisor.

FIG. 4 shows the activities when virtual tile A, contained
in physical tile P, sends a message to virtual tile A_,
contained in physical tile P,. Since P,’s local first level
cache is empty, a cache miss occurs. The cache miss is
handled by owner, which is known to be responsible for
A_,. In this case, the destination virtual tile A_, is already
mapped within owner,, therefore no reconfiguration activity
by owner, is needed. The mapping (A_,—P,) is locally
cached near the physical tile P,. Also, P, is recorded as a
sharer of the (A;—P,) mapping within owner,. Then, the
message from A, to A_, is delivered.

FIG. 5 shows the activities when virtual tile A_; contained
in physical tile P, sends a message to virtual tile A, con-
tained in physical tile P,. In this case, since the mapping
(A,—P,) is already in the local first level cache of P, there
is a cache hit; hence, the message is rapidly sent to the
destination physical tile P, and then forwarded to the virtual
tile A, contained in P, in its original form. There are no
mapping changes at this step, which is intended to show the
benefits of hitting in the local first level cache.

Notice that at this point, virtual tile A, has not been used
and has not been allocated in a physical tile. If the virtual tile
A, is not needed by the current inputs of the computation the
virtual supercomputer for application A is engaged in (i.e.,
A, is sufficient for accelerating application A for its current
input), then no message will be sent to A; and no physical
tile will be allocated for A . The present hypervisor system
therefore allows on-demand increase of hardware resources
for a given virtual supercomputer, delaying the allocation of
a physical tile until (if ever) it is actually needed. Similarly,
we will see that physical tiles that have remained idle will be
pre-empted, resulting in an incremental decrease of
resources for a given virtual supercomputer. Incremental
increase and decrease of resources is an essential require-
ment of ordinary software cloud computing; the present
hardware hypervisor system provides this feature for incre-
mental provisioning of hardware acceleration resources to
applications.

FIG. 6 shows the activities when virtual tile A, contained
in physical tile P, finally sends a message to virtual tile A,
which is not yet contained in any physical tile. The local first
level cache miss within P, is handled by owner, which is
known to be responsible for A;. Owner, asks the monitor
unit for the best physical tile to allocate A, in; the response
is the empty physical tile P;. A, is then allocated in P; by
owner,, i.e., owner,; reads the initial state of virtual tile A,
from the hypervisor storage, reconfigures the empty tile P,
to realize A |, and gets P; running. The mapping (A,;—P,) is
cached locally within P,. Also, P, is recorded as a sharer of
the (A,—P;) mapping within owner,. Then, the message
from A, to A, is delivered.

FIG. 7 shows the activities when virtual tile A, contained
in physical tile P; sends a message to virtual tile A, con-
tained in physical tile P,. The cache miss is handled by

10

15

20

25

30

35

40

45

50

55

60

65

12

owner,. A, is already allocated in P,; hence no reconfigu-
ration activity is needed. The mapping (A,—P,) is cached
locally P;. Also, P; recorded as a sharer of the (A,—P,)
mapping within owner,. Then, the message from A to A, is
delivered.

FIG. 8 shows the activities when virtual tile B_,; contained
in physical tile P, sends a message to virtual tile B,, which
is not yet contained in any physical tile. The local first level
cache miss for virtual tile B, is handled by owner, which is
responsible for B,. Owner, asks the monitor unit for the best
physical tile to allocate B, in. The monitor unit responds
with the physical tile P; currently containing the virtual tile
A, based on the Least Recently Used Tile replacement
policy (assuming P, has been idle for some time). Owner,
asks owner, to undo the (A, —P;) mapping, since owner, is
the one responsible for virtual tile A,. This is where the
sharer list becomes useful: For the owner of a given virtual
tile v to de-allocate/undo a mapping (v—p) to a physical tile
p, the following steps are followed:

1. The owner of v invalidates the (v—p) mapping in the
local first level cache of each sharer physical tile that
has the (v—p) mapping locally cached, and finally
deletes its own (v—p) mapping;

2. The owner of v stops the physical tile p at the next
precise interruption point, and saves the state/configu-
ration of v in hypervisor storage;

Going back to the example in FIG. 8:

P, is a sharer of the (A,—P;) mapping within owner,.
Thus, as a consequence of step 1 above, the (A;,—P;)
local first level cache entry in physical tile P, is deleted
by owner,. The (A;—P;) mapping and its sharers are
also deleted within owner,.

As a consequence of step 2 above, P, is stopped and
virtual tile A,’s state in P; is saved in hypervisor
storage by owner,.

Finally,

Virtual tile A; becomes unmapped in owner,, and

Physical tile P; becomes empty.

Now a clean empty physical tile P, is available for
allocating virtual tile B,,.

FIG. 9 continues to show the activities when virtual tile
B_, contained in physical tile P, sends a message to virtual
tile By, which is not yet contained in any physical tile. The
virtual tile B, is allocated in empty tile P, by owner,, i.e.,
owner, reads the state and configuration of virtual tile B,
from storage, reconfigures physical tile P; to realize virtual
tile By, and starts P;. The mapping (B,—P;) is locally
cached in P,. Also, P, is recorded as a sharer of the (B,—P;)
mapping within owner,. Then, the message from B_, to B,
is delivered.

Notice that the mapping (A,—P,) has remained in the
local cache of P;. If it remains unused, it will eventually be
evicted from this local cache.

In the illustrative small example above, we described the
effects of message transmissions on the hypervisor system,
as if the each message were transmitted following a global
sequential order on the message transmissions. In reality,
when two messages are independent, they will be transmit-
ted in any order or in parallel, and the tile pre-emption and
cache coherence actions will also occur in parallel, thanks to
the multiple owner units. We will describe the highly parallel
hardware implementation of the hypervisor system in detail
and also show how race condition errors are avoided, in the
sections below.

Primitive Hardware Building Blocks of the Hypervisor

At this point we incorporate by reference the co-pending,

co-owned non-provisional U.S. patent application Ser. No.

US 9,465,632 B2

13

13/296,232, entitled “Method and system for converting a
single-threaded software program into an application-spe-
cific supercomputer”. This patent application will be called
[Supercomputer| from this point on.

The present document describes a hypervisor system
comprising virtual supercomputers, while [Supercomputer|
describes a method and system for creating non-virtual (real)
supercomputers; therefore, the present document’s subject is
different. However, referring to [Supercomputer] (i) clarifies
and shortens the present hypervisor system’s baseline hard-
ware description, and also (ii) provides an important kind of
preferred embodiment.

The present hypervisor system will work with any physi-
cal tiles, virtual tiles and virtual supercomputers wherein:

Each virtual tile communicates with an agreed-upon mes-
sage interface and message format, through designated
pre-communication /O pins of the physical tile cur-
rently configured to realize the virtual tile;

Each virtual supercomputer operates correctly regardless
of network latencies:

The hypervisor ensures that for any given pair of virtual
tiles v1 and v2, the messages from v1 to v2 will not
be reordered. Also, it ensures that each message that
is sent from v1 to v2 is eventually received by v2;
messages are not lost. But the delivery of a message
from v1 to v2 may take arbitrarily long in terms of
wall clock time in a hypervisor environment. Each
virtual supercomputer should therefore first be unit-
tested in a real environment by artificially introduc-
ing random network delays, before being deployed
in the hypervisor;

Each physical tile and virtual tiles support, through des-
ignated control I/O pins of the physical tile:

Stopping the virtual tile currently being realized by the
physical tile at a precise message boundary point,
where no messages are only partially sent or only
partially received by the virtual tile;

Reading out the state of the stopped virtual tile;

Writing the saved state of a second virtual tile into the
physical tile; and

Restarting the second virtual tile from where it left off.

However, when the technology described in [Supercom-
puter]| is combined with the present hypervisor, we obtain an
important kind of specialized physical tiles, virtual tiles, and
virtual supercomputers such that:

Each design partition of a compiler-generated application-
specific supercomputer in [Supercomputer| becomes a
virtual tile within the hypervisor; and

The union chip for the design partitions in [Supercom-
puter| becomes a physical tile within the hypervisor.

The combination of the technology in [Supercomputer] with
the present hypervisor system therefore yields a new cloud
computing system, wherein each software application is
accelerated by a virtual application-specific supercomputer,
which is automatically obtained from the said software
application.

Further details of making use of the union chips generated
by [Supercomputer| as physical tiles, will be given in
optimization 1 in the optimization section.

In an attempt to make the present document more self-
contained, we will now also briefly summarize the features
from [Supercomputer] which are re-used in the present
hypervisor system. These features are specifically helpful
for implementing the components of the present hypervisor
at a low hardware level; although an experienced hardware
designer may choose other techniques which will work
equally well for the same implementation.

20

40

45

55

60

65

14

The hardware hypervisor system of the present document
will use the same (non-virtual) hardware building
blocks and the same I/O signal interface conventions,
including the software-hardware communication pro-
tocol, as described at least in the paragraphs [0037]-
[0066], [0081]-[0087], [0148]-[0154], [0155]-[0167],
and Appendix A of [Supercomputer]|. These include:
A FIFO interface handshaking specification, causing

the removal of a word from the front of the sending

FIFO and the addition of the said word to the back

of the receiving FIFO at the next rising clock edge,

if and only if the request output signal of the sending

FIFO (meaning the sending FIFO is not empty) and

the acknowledge output signal of the receiving FIFO

(meaning the receiving FIFO is not full) are both 1;

Variable length, multi word messages, with an end-of-
data bit signaling the last word;

A hardware component’s master port consisting of a
sending FIFO interface (which sends a request) and
a receiving FIFO interface (which receives a
response);

A hardware component’s slave port consisting of a
receiving FIFO interface (which receives a request)
and a sending FIFO interface (which sends a
response);

On-chip customized n input, m output incomplete
butterfly sub-networks, where messages are routed
from a sub-network input to a sub-network output
designated by a destination port field within the first
word of the message (the butterfly sub-network is
incomplete in the sense that the number of inputs and
outputs need not be a power of two);

On-chip customized networks connected to n master
ports and m slave ports, formed from a pair of
incomplete sub-networks:

A forward sub-network for sending a request from
the sending FIFO interface of master port to the
receiving FIFO interface of a slave port; and

A reverse sub-network for sending a response from
the sending FIFO interface of a slave port to the
receiving FIFO interface of a master port;

Chips and hardware modules built from components,
networks and external communication devices:
Components include finite state machines (FSMs)

with one or more FIFO interfaces;

External communication devices include an interface
to PCI Express, an interface to fast serial commu-
nication cables, an interface to wide busses
between chips on the rack module, with differen-
tial signaling, and an interface to DDRn DRAM
units outside the chip;

Within the conventions of the present document
and [Supercomputer], a component must
always go through a network to communicate
with another component. But point to point
networks can later be optimized as straight-
through wires;

Request routing within a forward sub-network based on
the destination port field (identifying the responding
component) within the first word of a message;

Response routing within a reverse sub-network based
on the source port field (identifying the requesting
component) in the first word of a message;

Technique for accessing multiple FIFO interfaces
simultaneously in a single state in a finite state
machine, correctly handling the cases where one

US 9,465,632 B2

15

FIFO interface immediately transmits data, while
another FIFO interface is delayed;

Technique for issuing multiple outstanding requests in
pipelined fashion and receiving responses out of
order, by using a tag field to match incoming
responses to outstanding requests (as exemplified by
this sequence of message transmissions of a hard-
ware component: (i) Send request 1 with tag 1; (ii)
Send request 2 with tag 2; (iii) Response 2 with tag
2 comes back; (iv) Response 1 with tag 1 comes
back)

Software API routines for low-level message commu-
nication between the software application and the
supercomputer which aims to accelerate it;

Incomplete hypercube cross-chip networks (“incom-
plete” meaning: a hypercube network where the
number of nodes need not be a power of two);

Method for partitioning a flat, non-partitioned applica-
tion-specific supercomputer design into multiple
chips or modules;

Method for creating a union chip which is capable of
realizing any of the partitions based on the configu-
ration parameters provided to the union chip.

Starting from the flat non-partitioned design of the hyper-
visor, to be described in detail below, the design partitioning
and chip unioning technique described at least in the para-
graphs [00169]-[00190] and Appendix K of [Supercom-
puter] will also be used to create the “union chip” of the
hardware hypervisor design, a chip that is capable of real-
izing any partition of the partitioned hypervisor design. This
union chip will be called the cloud building block chip. The
entire cloud data center will consist of copies of the cloud
building block chip in hierarchical enclosures (such as rack
modules and racks), wherein the copies of the cloud building
block chip will possibly differ only in the types of physical
tiles contained in it.

An example of design partitioning and chip unioning, as
it relates to creating a scalable hypervisor, will be given
below.

Key Hardware Components of the Hypervisor
The Networks and Components

Armed with the basic hardware building blocks of [Super-
computer|, we will now describe the hardware hypervisor
system in detail. FIG. 10 provides a legend for the symbols
occurring in the hardware schematics within the present
document. Referring to the top level hypervisor system
schematic in FIG. 11, the specific networks in the flat,
non-partitioned hypervisor system are listed below, in the
format:

Name of network: (component type having a master port
of the network) to (component type having a slave port
of the network).

Allocation/deallocation: Owner unit to owner unit. In
order pre-empt a physical tile p, a first owner tells a
second owner to de-allocate a virtual tile v already
allocated to a physical tile p. Also, using the same
network, an owner tells itself to allocate a virtual tile v
to an empty physical tile p. In addition, using the same
network, an owner tells itself to drain (ensure the
delivery of) all the undelivered messages emanating
from the last physical tile v was allocated to, to ensure
messages from v are not re-ordered in the networks
when v starts working on a different physical tile.

Control: Owner unit to physical tile harness. Using this
network, an owner unit stops a physical tile and reads
its state, or writes the new state of a physical tile and
starts it. An owner unit can also attempt to drain (ensure

5

10

15

20

25

30

35

40

45

50

55

60

65

16

the delivery of) all currently undelivered messages

emanating from a virtual tile.

Lookup: Physical tile harness to owner unit. A physical
tile harness requests the physical tile corresponding to
a virtual tile from its owner unit, to be able to cache the
mapping locally for re-use later. Using the same net-
work, a physical tile harness also notifies the owner of
virtual tile v, that it is abandoning/deleting a locally
cached mapping (v—p), where p is a physical tile.

Communication: Physical tile harness to physical tile
harness. This is for application-level communication
messages within a virtual supercomputer itself. Each
physical tile harness has one master port and one slave
port attached to the communication network.

A physical tile harness accepts an outbound message
from a physical tile and sends it out on the sending
FIFO of its master port of the communication net-
work. It receives an acknowledgement (confirming
that the message got to its destination physical tile
harness) from the receiving FIFO of the same master
port. Outbound messages are sent and acknowledge-
ments come back in pipelined manner: The physical
tile harness does not wait for an acknowledgement
for a first outbound message before sending a second
outbound message.

A physical tile harness receives an inbound application
message from the receiving FIFO of its slave port of
the communication network. This message is deliv-
ered as an inbound message to the attached physical
tile. The physical tile harness also sends an acknowl-
edgement to the sending physical tile harness, using
the sending FIFO of the same slave port.

The application virtual tiles are unaware of the acknowl-
edgements, which are not used during the normal
operation of the hypervisor when there are cache hits.
These acknowledgements are used by the hypervisor
solely to ensure that each pending, undelivered inbound
and outbound message pertaining to a particular physi-
cal tile is delivered to its destination, before the virtual
tile contained within the physical tile is pre-empted/
deallocated from that physical tile and later reallocated
to another physical tile. This mechanism is required for
preventing loss or reordering of messages.

Replacement tile selection: Owner unit to monitor. An
owner unit asks the monitor for a physical tile to
pre-empt. The monitor will typically respond with a
least recently used physical tile, assuming it is imple-
menting an LRU replacement policy. Also, an owner
notifies the monitor through this network, that a physi-
cal tile has been completely reconfigured.

Statistics: Physical tile to monitor. Each physical tile
provides periodic signals about its activities (e.g.,
whether it was idle or working within the last time
interval) to the monitor unit.

Outbound pre-communication n: (point to point), for each
physical tile n. Physical tile to the attached physical tile
harness.

Inbound pre-communication n: (point to point), for each
physical tile n. Physical tile harness to the attached
physical tile.

These networks carry application-level messages for the
virtual tile located inside a physical tile, making the
virtual tile unaware that it is running on physical tile.
The pre-communication networks consist of a unidi-
rectional inbound channel for application messages

US 9,465,632 B2

17

being received by the physical tile and a unidirectional
outbound channel for application messages being sent
by the physical tile.

Pre-control n (Point to Point), for Each Physical Tile n:
Physical tile harness to the attached physical tile. Used
for passing commands to shut down the tile and read its
state, and also to write the state of the tile and start the
tile.

Again referring to FIG. 11, the top level component types

in the hypervisor system are listed below, in the format:

Name of component type
Network x connected to this component, facing other

components of type y (type of port by which the
present component is connected to network x).

Physical tile harness n, n=0, 1, . . ., N-1:
(shown as PH,, . . . PH,,, in FIG. 11)

Lookup network facing owner units (master),

Communication network facing other physical tile har-
nesses (master and slave),

Control network facing owner units (slave),

Pre-control network facing the attached physical tile
(master),

Inbound pre-communication (unidirectional master)
and outbound pre-communication (unidirectional
slave) networks facing the attached physical tile.
These are point to point networks.

Owner unit m, m=0, 1, ..., M-1

Lookup network facing physical tile harnesses (slave)

Replacement tile selection network facing the monitor
(master)

Allocation/deallocation network facing the owners
(one master, and one slave port to this network)

Control network facing physical tile harnesses (master)

Monitor unit

Replacement tile selection network, facing the owners
(slave)

Statistics network facing the physical tiles (unidirec-
tional slave)

Physical tilen, n=0, 1, . . ., N-1: (shown as P, . . . P,

in FIG. 11)

Outbound pre-communication (unidirectional master)
and inbound pre-communication (unidirectional
slave) point-to-point networks facing the attached
physical tile harness (these networks are a pair of
sending and receiving channels)

Pre-control network facing the physical tile harness
(slave)

Statistics network facing the monitor unit (unidirec-
tional master)

Application placeholder tiles:

These behave exactly like a physical tile except that
they only need to perform message exchanges with
a software application: They exchange messages
with a specific software application on the host
processor through a set of PCI Express /O pins.

Of course, the flat design described above and in FIG. 11
is likely to exceed the area of a single chip, and must be
partitioned into multiple chips. A cloud building block chip,
which is capable of realizing any partition of the design
(based on the values in its configuration memory) is
obtained by applying chip unioning [Supercomputer] to the
partitioned flat design, is given in FIG. 12. In this example
the union chip contains up to 4 physical tiles, up to one
owner, up to one PciE connection, up to one monitor, and n
hypercube links for use in a hypervisor system with up to 2”
cloud building block chips.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

A union chip, such as the cloud building block chip in
FIG. 12, contains the maximum number of components of
each type in each partition. For example, if the monitor unit
(of which there is only one copy in the flat design of FIG.
11) is placed in partition O in a hypervisor system with
multiple partitions, the monitor unit will be present in all
copies of the union chip, but will be connected only when
the union chip is configured (via its configuration memory)
to realize partition 0. When the union chip is configured to
realize any partition other than O, the monitor unit is
disconnected and turned off for reducing leakage power.
Creating one single union chip where possible, can reduce
mask expenses as well as chip testing expenses when
releasing an ASIC implementation, although each individual
partition will require less area than the union chip.

Let us summarize the design partitioning and chip union-
ing technique of [Supercomputer], and show with an
example how a collection of union chips work together to
realize the function of a flat non-partitioned design of a
cloud computing data center: Assume we are given, for the
sake of an example, an original flat design of a small data
center, with 14 physical tiles (including 2 application place-
holder tiles with PciE connections), 3 owners, and one
monitor. Since only a small number of components will fit
in each chip, after design partitioning and chip unioning,
assume that this flat design leads to 4 cloud building block
chips 0, 1, 2, and 3, each with:

Up to 4 physical tiles per chip:

The 14 physical tiles are distributed thus: 4 physical
tiles each in chips 0, 1; and 3 physical tiles each in
chips 2, 3;

Up to 1 owner per chip:

The 3 owners are in chips 0, 1, 2, respectively;

Up to 1 monitor per chip:

The only monitor is in chip 0;

Up to 1 PciE connection per chip
The 2 PciE connections are in chips 0 and 2, respec-

tively.

As an example of message routing using the cloud build-
ing block chips, here is how owner unit 2 in chip 2, sends a
tile_request (“give me a physical tile to pre-empt”) message
over the replacement tile selection network, to the monitor
unit in chip 0. Gray code versions of chip numbers 0, 1, 2,
and 3 are used (0=Gray 00 1=Gray 01 2=Gray 11 3=Gray
10), since Gray codes are more convenient for the purpose
of deterministic hypercube routing, A scalable hypercube
network connects the cloud building block chips.

Owner unit in chip 2 (Gray code 11) sends a request
message over the local replacement tile selection partial
network, to the local 1/O controller of chip 2; The
request message is routed correctly, by virtue of the
routing tables on each leg of the message’s journey;
The routing tables are part of the configuration param-
eters of each union chip;

In the I/O controller of chip 2 (Gray code 11), the tile
request is sent to the next chip (chip 3, Gray code 10)
on the deterministic greedy hypercube routing path
leading to chip 0 (Gray code 00). The deterministic
greedy hypercube routing path from 11 to 00 is
11—+10—00, using Gray code numbering;

The I/O controller in chip 3 (with Gray code 10) receives
the message, realizes the message is not yet at its
destination chip 0, and then sends the message to the
next chip on the routing path, which is the final
destination chip 0 (Gray code 00);

The 1/0 controller in chip 0 (Gray code 00) receives the
message, realizes the message has reached its final

US 9,465,632 B2

19

destination chip, and routes the tile_request message

over the local replacement tile selection partial network

to the monitor unit in chip 0.

The message has thus been successfully sent from owner
unit 2 in chip 2, to the monitor unit in chip 0.

The net result is that the collection of the 4 cloud building
block chips displays behavior identical to the original flat
design with 14 physical tiles, 3 owners, 1 monitor and 2 PCI
Express connections, as described above. More details of the
design partitioning and chip unioning algorithms are
described in [Supercomputer].

The “hypervisor storage” for keeping the saved state of
virtual tiles is realized with off-chip DRAM units. For
saving and restoring tile states, it suffices for each owner unit
to access the local DRAM unit closest to the chip containing
the owner unit. We have not included the DRAM DDRn
controllers in the figures, for simplifying the figures,
although each cloud building block chip will have at least
one such controller. The DDRn controllers in each chip are
connected to DRAM units packaged in, e.g., DIMMs (Dual
Inline Memory Modules) on the board. The physical tiles
implementing the virtual supercomputers may also share
different regions of the same local DRAM resources on the
board.

We have used many different networks for different
functions in this design as a “separation of concerns”
simplification, as in software design practice. Of course, the
number of networks can be reduced by resource sharing, for
example, by using (optimization 5, starting on p. 145 of
[Supercomputer]) repeatedly, or by creating virtual networks
each with their separate input and output FIFOs, where the
virtual networks are implemented on a single common
physical network or bus connecting the hardware compo-
nents.

Message Formats within the Hypervisor System

In this section we will describe the message formats used
in the hypervisor system. We will start with an example of
a message:

Send Request (lookup network): Source=(requesting
physical tile=me) Tag=(t1=new tag) Dest=(owner of
v=z) Opcode=access_request Vtile=(virtual tile to look
up=v)

The message format first indicates whether the message is
being sent or received by the present hardware unit, and
whether the message is a request or a response, and further
identifies the network where the message is sent or received.
The remaining part of the message is sequence of field
specifications of the form: Field=(explanation=variable)
when the value of the variable is used for creating the
message field or for checking the value of the message
against an expected value, or of the form Field=
(variable=explanation) when the message field (which
already has a value in this case) is assigned to the variable.
“me” appearing in messages identifies the number of the
current hardware unit sending or receiving the message.
Variable names have local scope within their message
exchange description, unless otherwise specified. The
Field=(explanation) form is also used, in case no variables
are needed. We will explain the message fields below:

Source=(requester unit)

The number identifying the hardware unit on the speci-
fied network which sends requests and receives
responses; i.e., the requesting unit number. Notice
that in a pair of messages consisting of a request and
a corresponding response, the Source field of the
response message is the same as the Source field of
the request message. l.e., the Source field always

5

10

15

20

25

30

35

40

45

50

55

60

65

20

refers to the requester. Given that a response is sent
from the responder to the requester, the Source field
is the “destination” of the response message.

Tag=(outstanding request id tag)

The unique tag to identify which outstanding request this
is, when software pipelining is done so that there are
multiple outstanding requests, and responses can come
back out of order. A tag field is not required when there
is only one outstanding request at a time or when
responses always come back in order. Notice that in a
pair of messages consisting of a request and a corre-
sponding response, the Tag field of the response is
always the same as it is in the request. “New tag”
appearing in a Tag field that is part of a request message
being sent, means a tag that is not currently being used
by another outstanding request.

Dest=(Responder unit)

The number of a responder unit on the network, which
receives requests and sends responses. The Dest field
is present only in request messages.

Opcode=operation code
The constant representing the operation to be per-

formed by the request or response message.

Param1=(first parameter)

Param2=(second parameter)

Param1, Param2, . . . constitute the optional parameters
of the message.

Note that ceil(log, (mumber of possible values of the
field)) bits are needed to encode a field in a message, within
the context of the messages described in the present docu-
ment. In particular, when there is only one possible value for
a field, O bits are required to encode the field, and therefore
such a field will not physically appear in the message. For
example, the Opcode field in the single operation code case
will not be physically present in the messages; in this case,
the Opcode is provided only as a convenience for the reader.

Long messages will be broken up into a sequence of
words with an end-of-data bit=0, ending with a word whose
end-of-data bit=1, as in [Supercomputer|; this variable
length encoding does not change the meaning of the mes-
sage. The order of the fields within a message, and the
particular binary values for representing constant fields, are
not important, as long as a precise contract for the message
format is followed throughout the design.

The Reconfigurable Physical Tile

The physical tile is a hardware component that can be
reconfigured to implement one or more virtual tiles of one or
more virtual supercomputers within the hypervisor system.

Referring to FIG. 11 (where physical tiles are labeled P,
P, ..., Py.), each physical tile has the following ports:

A master port of the outbound pre-communication net-
work, facing the attached physical tile harness. This
unidirectional master ports sends requests only, it does
not receive responses.

A slave port of the inbound pre-communication network,
facing the attached physical tile harness. This unidirec-
tional slave port receives requests (originally emanat-
ing from other physical tiles) only, it does not send
responses.

A (bidirectional) slave port of the pre-control network
facing the attached physical tile harness.

A master port of the statistics network facing the monitor.
This unidirectional master port sends requests only, it
does not receive responses.

The physical tile’s internal operation is defined mainly by

the virtual tile it is currently configured to implement. The

US 9,465,632 B2

21

hypervisor system does not need to understand the internal
operation of the virtual tile currently being implemented, as
long as the virtual tile complies with the requirements
described above. In this section, we will specity the follow-
ing key behavior of a physical tile relevant to the operation
of the hypervisor system:

An /O interface for stopping, reading the state of, writing
the state of, and restarting a physical tile, through the
physical tile’s control I/O pins, in order to make the
physical tile implement any one of the virtual tiles it is
able to implement; and

A message format and message [/O interface, by which a
virtual tile sends messages through the enclosing physi-
cal tile’s outbound pre-communication 1/O pins, and
receives messages through the enclosing physical tile’s
inbound pre-communication 1/O pins.

Slave Port of Pre-Control Network Facing the Attached
Physical Tile Harness

The physical tile’s slave port of the pre-control network
facing the physical tile harness accepts the following
requests and sends back the following responses:

Receive Request (pre-control): Opcode=shutdown_an-
d_read_state

Send Response (pre-control):
esponse Tilestate=(state data)
Upon receiving the shutdown_and_read_state request,

the physical tile waits until the enclosed virtual tile
reaches a state where the virtual tile is expecting
inbound pre-communication input but the input
queue is empty (e.g., for a virtual tile which fre-
quently reads input messages, this can be achieved if
the physical tile checks for the presence of the
shutdown_and_read_state request only when its
inbound pre-communication input FIFO is empty).
Then, the physical tile waits further if needed, until
a cycle is reached where there is no outgoing mes-
sage being sent by the enclosed virtual tile, and then
stops the enclosed virtual tile (e.g., by simply stop-
ping the global clock of the virtual tile, or by making
the entire virtual tile enter a special reconfiguration
state through an agreed-upon handshaking protocol).

Then, the entire state of the virtual tile contained within
the physical tile (both the execution state such as
registers and memories, and the configuration
SRAM bits indicating the identity of the current
virtual tile), is read (e.g., shifted out through one or
more scan chains while the global clock is stopped,
or received from the virtual tile now in the special
reconfiguration state) and returned as the response to
the shutdown_and_read_state request.

Receive Request (pre-control): Opcode=write_state
Tilestate=(state data)

Send Response (pre-control): Opcode=acknowledge
The physical tile should be in the stopped condition

when this request is received.

This request is processed by writing both the execution
state (registers and memories) and configuration
SRAMs indicating the identity of the virtual tile from
the “state data” (e.g., by using one or more scan
chains while the global clock is stopped, or by
sending state data to the virtual tile now in the special
reconfiguration state), and then, once the entire state
has been written, starting the enclosed virtual tile
(e.g., by starting its global clock, or making it exit the
reconfiguration state). Then, the physical tile exits
the stopped condition, and starts running, continuing

Opcode=read_state_r-

20

40

45

22

the execution and message exchanges of the new
virtual tile that was just restored.

At system reset time, each physical tile is in the stopped
condition, except for application placeholder tiles (described
below) which are running and are ready for any message
exchanges with their respective software applications.

Pre-conditions of shutdown_and_read_state: When the
shutdown_and_read_state request is received by a physical
tile p currently running virtual tile v, all local first level cache
entries (v—p) within physical tile harnesses in the hypervi-
sor system, pointing to the present physical tile p, should be
already invalidated, and any remaining incoming messages
should have been received by the physical tile harness
attached to the present physical tile. Notice that, as it will be
seen in the owner unit section below, once a local cache
entry (v—p) is invalidated, further messages to virtual tile v
will be blocked until the owner unit of v completes the
de-allocation of (v—p) and starts processing the waiting
access_request commands for v, to reallocate v in possibly
a new physical tile.

Post-conditions of shutdown_and_read_state: Notice that
after processing a shutdown_and read_state request: all
pending incoming messages to virtual tile v on physical tile
p are consumed (no incoming messages are left in the
network); and further incoming messages to v are blocked in
the owner of v. But the outgoing messages sent by the virtual
tile v on physical tile p may remain undelivered to their
destinations; these outgoing messages may sit in the network
for an arbitrary time. These outgoing messages should be
delivered to their destination virtual tiles, before the virtual
tile v is reallocated to a different physical tile p'=p, to prevent
re-ordering of messages coming out from virtual tile v. Note
that the networks of the preferred embodiment use deter-
ministic routing and guarantee that the messages from one
given input port to one given output port will not be
reordered in the network; but there is no guarantee regarding
the order of delivery of messages from different input ports.
Hence, when a virtual tile is migrated to a new physical tile,
a drain command is required, to ensure the delivery of the
pending undelivered messages that emanated from the same
virtual tile, while it was allocated to its prior physical tile.

We already provided above a method for shutting down a
virtual tile v (currently on physical tile p) which frequently
reads its input, by simply honoring shutdown requests only
when the virtual tile’s normal inbound pre-communication
input FIFO is empty. For shutting down a virtual tile v
(currently on physical tile p) which rarely reads its input, we
propose another method:

An extra “input buffer FIFO” is introduced internally
between the inbound pre-communication network and
the actual input FIFO interface of the virtual tile. The
shutdown_and_read_state request sent to p can again
be honored when the inbound pre-communication input
FIFO of p is empty. But in this case, pending unpro-
cessed input messages may be sitting in the input buffer
FIFO, at the instant the shutdown request is honored.
The input buffer FIFO will be saved and restored as part
of virtual tile v’s state. The pending unprocessed mes-
sages in the “input buffer FIFO” will then be read
before the regular inbound pre-communication network
input FIFO, when the virtual tile is awakened/restarted
after a new message arrives at it. In case no messages
arrive to wake up a virtual tile with a non-empty “input
buffer FIFO” for a long time, an artificial dummy
message should be sent to this virtual tile to wake it up,
to ensure that any unprocessed message waiting in the
input buffer FIFO is eventually processed.

US 9,465,632 B2

23

Master Port of Statistics Network Facing the Monitor

A physical tile’s unidirectional master port of the statistics
network facing the monitor, periodically issues the follow-
ing requests:

Send Request (statistics): Opcode=status_update Ptile=
(my physical tile) Status=(I am workingll am not
working)

Each physical tile periodically sends status update
requests to the monitor unit. The monitor unit col-
lects these statistics from all physical tiles and makes
decisions on the specific tiles to pre-empt.

See the monitor unit description, regarding a hardware-
efficient token-ring implementation of the statistics
network.

No response is needed; statistics is a unidirectional net-
work.

Master Port of Outbound Pre-Communication Network Fac-
ing the Attached Physical Tile Harness;

Slave Port of Inbound Pre-Communication Network Facing
the Attached Physical Tile Harness

A physical tile’s unidirectional master port of the out-
bound pre-communication network, and unidirectional slave
port of the inbound pre-communication network, where both
networks face the attached physical tile, accomplish the
inter-virtual-tile communications within the application-spe-
cific virtual supercomputer. Both outgoing and incoming
messages have the same message format:

Send Request (outbound pre-communication):
Opcode=communicate Vdest=(virtual destination tile)
Vsource=(virtual source tile) Payload=(application
message payload)

Receive Request (inbound pre-communication):
Opcode=communicate Vdest=(virtual destination tile)
Vsource=(virtual source tile) Payload=(application
message payload)

Each virtual tile implemented on a reconfigurable physi-
cal tile is made to believe (with the help of the hypervisor
infrastructure) that it is communicating natively with other
virtual tiles of the same virtual supercomputer, as if the
supercomputer were implemented with native, non-virtual
hardware. In reality virtual tiles are allocated to physical
tiles on demand, and then possibly pre-empted (de-allocated
from the physical tile), for example, after the virtual tile has
remained idle for a sufficiently long time. The virtual des-
tination tile within such a message is needed, for looking up
the corresponding physical destination tile number. The
virtual source tile within such a message is also needed, for
keeping track of any undelivered messages emanating from
this virtual source tile. Therefore, a pre-communication
network message for inter-virtual-tile communication,
should meet the following pre-communication message for-
mat requirement:

The virtual destination tile should be located in fixed

agreed-upon bit positions of the message; and

The virtual source tile should be located in fixed agreed-
upon bit positions of the message;

uniformly for all virtual supercomputers.

This completes the description of the reconfigurable physi-
cal tile.

Application Placeholder Physical Tiles

Assuming the local virtual tiles of a given virtual super-
computer performing the real hardware functions are num-
bered 0, 1, 2, .. ., n-1, it is convenient to create a new local
virtual tile of the same virtual supercomputer, numbered -1,
whose only job is to relay messages to and from the software
application, which this virtual supercomputer accelerates.
This way, messages exchanged between the local virtual

10

15

20

25

30

35

40

45

50

55

60

65

24

tiles and the software application do not need to be treated

as a special case with respect to message routing. Given a

hypervisor system implementing m (software application,

virtual supercomputer) pairs, using m general purpose com-
modity host processors each running a software application
that is accelerated by a virtual supercomputer, we can create

m application placeholder virtual tiles, and permanently map

them to fixed physical application placeholder tiles within

the hypervisor, that will not be de-allocated. Each applica-
tion placeholder physical tile will communicate point-to-
point with a PCI Express external communication device
that leads to the correct host processor running the corre-
sponding software application. Thus, when a host applica-
tion sends a message to a local virtual tile of its virtual
supercomputer, this message enters the hypervisor system at
the dedicated PCI Express connection and application place-
holder physical tile tied to this host processor. A message
sent by the software application will appear to be coming
from local virtual tile —1. When a local virtual tile numbered

0, 1, . . . of the virtual supercomputer wishes to send a

message to its software application, it will send the message

to its application placeholder local virtual tile -1, which will
in turn forward the message to the software application over
the PCI Express connection.

Physical Tile Harness Unit
Referring to the schematic in FIG. 13, in this section we

will describe the physical tile harness unit, including its

internal finite state machines.

Internal Memory State:

The internal memories and registers of a physical tile
harness are:

A local first level cache, called L1, which contains map-
pings (v—p) where v is a virtual tile and p is a physical
tile that currently implements the virtual tile. L.e., the
cache L1 is addressed with a virtual tile v, and a
physical tile L1 [v] is returned as the data. If the virtual
tile v is not present in the [.1, L1[v] is defined to be
NULL.

Rapid pre-emption activities and network contention
can leave messages from virtual supercomputers of
more than one application in the FIFO queues of a
physical tile harness. Even messages whose source
virtual tile has already been deallocated/preempted
can exist in the system. Therefore, for simplifying
the cache coherency design and reducing the race
conditions, the local first level cache of a physical
tile harness is designed to be addressed by the global
virtual tiles of any of the virtual supercomputers in
the hypervisor system (a global virtual tile v is a pair
(application id, local virtual tile number within the
virtual supercomputer), as already described above).
The isolation of virtual supercomputers from each
other is addressed separately in the optimizations
section, in optimization 6.

A set-associative cache design with high associativity is
suitable for this cache, although other implementa-
tions are also possible.

set of virtual tiles, called lockedSource: A message’s

virtual source tile is in lockedSource if and only if that

message (originally coming from a physical tile con-
taining that virtual source tile over the outbound pre-
communication network) has entered, but has not yet
exited the “outbound communication request FSM” of
the physical tile harness. In case this FSM is not
software pipelined, so that the lockedSource set has at
most one element, a simple register which contains the
locked virtual tile when the set is full, and which

A

US 9,465,632 B2

25

contains NULL when the set is empty, is sufficient for
implementing this set. Otherwise, any technique for
implementing a set in hardware can be used.

A set of virtual tiles, called lockedDest: A virtual desti-
nation tile is in lockedDest if and only if a message
(from the outbound pre-communication network) going
to that virtual destination tile has entered, but has not
yet exited the “outbound communication request FSM”
of the physical tile harness. In case this FSM is not

26

virtual tiles. The outbound communication request FSM, the
outbound communication response FSM, as well as the
control FSM share the outstandingByDest and outstanding-
BySource counter arrays. The accesses to these shared data
structures must be made to appear atomic, which can be
achieved by a multi-ported design and/or a network for
arbitration.

The physical tile harness includes the following internal
finite state machines (FSMs), which will each be described

software pipelined, so that the set has at most one 10 separately.
element, a simple register is sufficient for implementing Outbound Communication Request FSM:
this set. Otherwise, any technique for implementing a Outbound Communication Response FSM:
set in hardware can be used. The Outbound Communication Request FSM has the
A map from virtual tiles to counters, called outstanding- Following FIFO Interfaces
ByDest: given a virtual destination tile v1, this map 15 The sending FIFO interface of the master port of the
returns the number of current application communica- communication network facing the other physical tile
tion messages that have been sent out from the present harnesses: this FIFO interface is used for sending
physical tile harness to that virtual destination tile v1, application communication messages to another physi-
but have not yet arrived at the corresponding physical cal tile harness unit.
tile harness containing v1. Each time an application 20 Notice that the outbound communication request FSM
communication message with virtual destination tile v1 is connected to the sending FIFO of the master port
is sent out, outstandingByDest[v1l] is incremented. of the communication network, and the outbound
Each time an acknowledgement confirming receipt of communication response FSM is connected to the
an application communication message with virtual receiving FIFO of the same master port. Thus, each
destination tile destination vl comes back, outstand- 25 FSM is responsible for one half of the master port of
ingByDest[v1] is decremented. Zero-valued counter the communication network (shown as 2 M in FIG.
entries are not stored in the map (the absence of an 13).
entry in the map signifies the entry is zero). At the time The receiving FIFO interface of the slave port of the
a counter entry is decremented to zero, it is deleted outbound pre-communication network facing the
from the map; hence the map is self-erasing. 30 attached physical tile. This unidirectional slave port
A map from virtual tiles to counters, called outstanding- receives requests only; it does not send back responses.
BySource: given a virtual source tile v1, this map The bidirectional master port of the lookup network
returns the number of current application communica- facing owner units (which consists of a sending FIFO
tion messages that have been sent out from that virtual interface for requests, and a receiving FIFO interface
source tile v1, but have not yet arrived at the corre- 35 for responses): This master port is used for sending
sponding physical tile harness containing the destina- access_request commands for the looking up the physi-
tion virtual tile of the message. Each time an applica- cal destination tile corresponding to a virtual destina-
tion communication message with virtual source tile v1 tion tile, which is not present in the local first level
is sent, outstandingBySource[v1] is incremented. Each cache of the present physical tile harness. This network
time an acknowledgement arrives, confirming receipt 40 is also used for abandon requests notifying the owner
of an application communication message with virtual unit of a virtual tile v, that a local first level cache L.1
source tile v1, outstandingBySource[vl] is decre- entry (v—p) is being deleted/abandoned by the present
mented. physical tile harness.
Since manipulating outstanding message counters is The Outbound Communication Response FSM has the
not on the critical path for sending messages between 45 Following FIFO Interfaces
virtual tiles during normal hypervisor operation, Receiving FIFO interface of the master port to the com-
these maps can be implemented as a multi-ported munication network. This is used for receiving
and/or bank-interleaved deeply pipelined cache acknowledgement messages indicating that a message
using SRAMs. The cache should be capable of reached its destination physical tile harness.
performing in-place increment and decrement opera- 50 The “Outbound communication request FSM” performs
tions. When both an increment and a decrement the following steps repeatedly, in an unending loop:
request for the same virtual tile arrive at the same The FSM waits for an input message to the receiving
cycle, the two requests can be optimized as a no-op. FIFO of the unidirectional slave port of the outbound
A cache entry should be invalidated when it is pre-communication network facing the physical tile.
decremented to zero. When a message needs to be 55 The input message will be of the form:
sent, but no free counter is available in the addressed Receive Request (outbound pre-communication):
counter cache set, the message waits until a counter Opcode=communicate Vdest=(v=virtual destination
within the set is decremented to zero and becomes tile) Vsource=(v_src=virtual source tile) Payload=
free. When an addressed counter is about to exceed (m=the application message payload)
the maximum counter value (because there are too 60 The virtual source virtual tile v_src and virtual destination
many outstanding messages), the outgoing message tile v are locked. The virtual destination tile v is also
also waits until enough acknowledges come back looked up in the local first level cache, 1.1, mapping
from prior messages involving the same virtual tile. virtual to physical tiles:
As it will be described below, the control FSM and the Atomically do: p=L1[v]; add v to LockedDest; add
outbound communication request FSM of the physical tile 65 v_src to LockedSource;
harness both share (i) the local virtual tile to physical tile Locking the virtual destination tile v prevents an incom-

cache called L1 (ii) the lockedDest and lockedSource sets of ing invalidate v request from executing. Locking the

US 9,465,632 B2

27

virtual source tile v_src tells the logic to drain mes-

sages, that there is at least one unsent message from

V_src.

If v is not present in the local cache (p=—=NULL),

The number of the unique owner unit z responsible for
the virtual destination tile v is computed with a hash
algorithm. The message
Send Request (lookup): Source=(requesting physical

tile harness=me) Tag=(tl=new tag) Dest=(owner
of v=7) Opcode=access_request Vtile=(virtual tile
to look up=v)

is sent to the owner unit z over the master port of the
lookup network facing owner units.

Then, the response:

Receive Response (lookup): Source=(same source as
in the request=me) Tag=(same tag as in the
request=tl) Opcode=access_response Ptile=
(p=the physical tile v is now mapped to)

is received from the owner unit of v over the lookup
network again from the same master port, where p is
the physical destination tile for the virtual tile v.
Notice that the owner unit may have just pre-empted
and reconfigured the physical tile p if necessary, to
make v become mapped to p. Or alternatively, v may
already be mapped to p in the owner unit of v.

Finally, the mapping (v—p) is added to the local first
level cache, L1, of the present physical tile harness.
Atomically do: L1[v]=p

At this point, if there was a cache miss in the local first
level cache, it has already been processed. p, the
physical tile where virtual tile v is located, is now
known.

Since the message to the virtual destination tile v will now
definitely go out, outstandingByDest[v] is incremented.
outstandingBySource[v_src] is also incremented,
where v_src is the source virtual tile of the present
outbound application communication message. The
destination virtual tile v and source virtual tile v_src are
then unlocked (v is removed from lockedDest and
v_src is removed from lockedSource), indicating that
the processing for the current message is complete. All
these data structure accesses are done atomically. The
message is sent out from the sending FIFO of the
master port of the communication network facing other
physical tile harnesses as:

Send Request (communication): Source=(requesting
physical tile harness=me) Dest=(physical destination
tile harness=p) Opcode=communicate Vdest=(vir-
tual destination tile=v) Vsource=(virtual source
tile=v_src) Payload=(the application message
payload=m)

An arbitrary delay after sending the outbound commu-
nication message request, an acknowledgement is
received through the receiving FIFO of the master
port of the communication network, by the separate
outbound communication response FSM:

Receive Response (communication): Source=(re-
questing physical tile harness=me)
Opcode=communication_acknowledge Vdest=
(virtual destination tile=v) Vsource=(virtual
source tile=v_src)

Communication acknowledgements can come back out
of order, which offers latitude in designing the com-
munication acknowledgement sub-network. The
message ordering requirements of the hypervisor are
not violated, since such communication acknowl-
edgements are not visible to the virtual supercom-

10

15

20

25

30

35

40

45

50

55

60

65

28

puters, and are used only for checking if the number
of outgoing communication requests is equal to the
number of incoming communication acknowledge-
ments.

The sole action of the separate outbound communica-
tion response FSM is to atomically decrement the
outstandingBySource[v_src] and outstandingByDest
[v] counters. The incoming acknowledgement mes-
sage is discarded.

If a cache miss occurred while searching for v in the local
first level cache, L1, and the selected cache set was
almost full, an abandon transaction is attempted in
order to make space in this cache set, as follows:
The following test and entry selection is done atomi-

cally: if the addressed cache set is still almost full, an
entry (v'—p') in the set (where v'= v), such that there
are zero undelivered messages to v' (outstanding-
ByDest[V'] is zero) is selected, if there is such an
entry.

If the cache set is almost full and an entry (v'—p') could
be chosen,

The following request is sent to the owner unit of v":

Send Request (lookup): Source=(requesting
physical tile harness=me) Tag=(t2=new tag)
Dest=(owner of v') Opcode=abandon Vtile=
(virtual tile to abandon=v') Ptile=(the present
physical tile v' is mapped to=p")

If the mapping (v'—p') exists in the owner of V', and
the current physical tile (passed in the Source field

of the abandon request sent to the owner) is a

sharer of the (v'—p') map entry in the owner of v',

a (positive) acknowledgement is sent back from

the owner to the present physical tile harness.

Receive Response (lookup): Source=(same source
as in the request=me) Tag=(same tag as in the
request=t2) Opcode=acknowledge

In this case, the abandon attempt is successful.
(v'—p") is (atomically) removed from the local
cache L1 within the present physical tile harness.

Otherwise, a negative acknowledgement is sent back
from the owner of v' to the present physical tile
harness.

Receive Response (lookup): Source=(same source
as in the request=me) Tag=(same tag as in the
request=t2) Opcode=negative_acknowledge

In this case, the abandon attempt is unsuccessful.

Nothing is done in the physical tile harness. The

abandon attempt has become a no-op, and no

side-effects have occurred.

If no entry to abandon could be selected because of
pending outgoing messages, or if the abandon
attempt is not successful, the abandon attempt is
retried, until the cache set is no longer almost full or
until the abandon request gets a positive acknowl-
edge. A wait time is imposed before each retry.

Notice that while an abandon request is in progress,
concurrent invalidate requests can make the .1 cache set
smaller automatically, and therefore the need to abandon an
entry may go away by itself.

The transactional implementation of abandon described
above is required because, depending on the network con-
tention, there may be many additional transactions in the
owner regarding v' (such as deallocating v' from p, allocat-
ing v' on a different physical tile p"), while the abandon
message for (v'—=p') is in transit from the present physical
tile to the owner of v'

US 9,465,632 B2

29

The “outbound communication request FSM”, written in
sequential code here, can be “software pipelined” (i.e.,
iterations n+1, n+2, . . . can be started before iteration n is
finished) by correctly respecting dependences. For example,
when there are two back to back access_request commands
to the same virtual tile, but the first one misses in the local
first level cache, the second request must wait for the first
one to update the local first level cache. However, two
back-to-back access_request commands to different virtual
tiles can proceed in parallel/pipelined fashion. Messages
from one given virtual tile to another given virtual tile
should never be re-ordered, since not reordering messages
between a pair of virtual tiles is a guarantee the hypervisor
gives to all virtual supercomputers.

The “outbound communication response FSM” can also
be software pipelined, so that a deeply pipelined implemen-
tation of the outstandingBySource and outstandingByDest
data structures can be utilized.

Inbound Communication FSM:

This FSM has the following FIFO interfaces

The slave port of the communication network facing the
other physical tile harnesses: This bidirectional port is
used for receiving application messages internal to the
virtual supercomputer, and sending back acknowledge-
ment responses, for confirming that the message has
reached its destination.

The sending FIFO interface of the master port to the
inbound pre-communication network facing the
attached physical tile. This unidirectional master port
sends requests only, it does not receive responses.

The inbound communication FSM executes the following
steps in an unending loop:

The FSM waits for an incoming message from the receiv-

ing FIFO of the slave port of the communication

network facing other physical tile harnesses, of the
form
Receive Request (communication): Source=

(pO=sending physical tile harness) Dest=(receiving
physical tile harness=me) Opcode=communicate
Vdest=(v=virtual destination tile) Vsource=
(v_src=virtual source tile) Payload=(m=application
message payload)

The physical tile routing information is deleted from the
inbound communication message. This resulting mes-
sage is then sent over the sending FIFO of the master
port of the inbound pre-communication network, to the
attached physical tile, as follows:

Send Request (inbound pre-communication):
Opcode=communicate Vdest=(virtual destination
tile=v) Vsource=(Virtual source tile=v_src) Pay-
load=(application message payload=m)

Also, an acknowledgement response is sent back from the
sending FIFO of the communication network slave

port:
Send Response (communication): Source=(same
source as in the request r0)

Opcode=communication_acknowledge Vdest=(vir-
tual destination tile=v) Vsource=(virtual source
tile=v_src)
The inbound communication FSM, specified as sequential
code here, can be software-pipelined by correctly respecting
dependences.
Control FSM
This FSM has the following ports:
The slave port of the control network facing owner units:
An owner can use this port to send a shutdown_an-
d_read_state request or a write_state request ro the

20

25

30

35

40

45

50

55

60

65

30

present physical tile harness; to invalidate a mapping
(virtual tile—physical tile) in the local first level cache
of the present physical tile harness (called L1); and also
to drain messages emanating from a particular source
virtual tile and also from the present physical tile
harness.

The master port of the pre-control network facing the
attached physical tile: this port relays shutdown_an-
d_read_state and write_state messages coming from an
owner unit to the present physical tile harness over the
control network, to the attached physical tile.

The control FSM executes the following steps in an

unending loop:

The FSM waits for an incoming request message from the
slave port of the control network facing owners.

If the message is of the form
Receive Request (control): Source=(oO=requesting

owner unit) Tag=(t0=tag) Dest=me
Opcode=shutdown_and_read_state
This request is passed on to the master port of the
pre-control network facing the attached physical tile, as
Send Request (pre-control):
Opcode=shutdown_and_read_state
The Source (sending owner unit number) and Tag
fields, which identify an outstanding request are saved
in variables 00 and t0 respectively. When the response
(state data) is received from the receiving FIFO of the
master port of the pre-control network facing the

attached physical tile, which will be of the form:

Receive Response (pre-control):
Opcode=read_state_response Tilestate=(st=state
data)

this response is then forwarded to slave port of the

control network facing owner units after adding

response routing information fields, as:

Send Response (control): Source=(same source (send-
ing owner) unit as in the request=00) Tag=(same tag
as in the request=t0) Opcode=read_state_response
Tilestate=(state data=st)

The transfer of the tile state from the pre-control to the

control network should be implemented in pipelined

fashion for large states.
Else, if the message is of the form:

Receive Request (control): Source=(oO=requesting
owner unit) Tag=(t0=tag) Dest=me
Opcode=write_state Tilestate=(st=state data)

the message is passed on to the master port of the

pre-control network facing the attached physical tile

after deleting the routing fields, as

Send Request (pre-control): Opcode=write_state
Tilestate=(state data=st)

The transfer of the tile state from the control to the

pre-control network should be implemented in pipe-

lined fashion for large states.

The source of the request (requesting owner), and the

outstanding request tag are saved locally in the vari-

ables 00 and t0. The response (acknowledgement)
coming from the master port of the pre-control network
facing the physical tile

Receive Response (pre-control): Opcode=acknowledge

is forwarded to the slave port of the control network

facing the owner units, after adding physical tile rout-
ing information, as:

Send Response (control): Source=(same source as in
the request=00) Tag=(same tag as in the request=t0)
Opcode=acknowledge

US 9,465,632 B2

31

Else, if the message is of the form

Receive Request (control): Source=(o0O=requesting
owner) Tag=(t0=tag) Dest=me Opcode=invalidate
Vtile=(v=the virtual tile to invalidate)

If v is locked as a virtual destination tile (i.e., v is a

member of lockedDest, meaning that there is an ongo-

ing access_request transaction which is about to place

v in the local cache 1)

A negative acknowledgement response is sent back,
and the invalidate transaction ends immediately:
Send Response (control): Source=(same source as in

the request=00) Tag=(same tag as in the
request=t0) Opcode=negative_acknowledge

The requesting owner will then retry the invalidate
request at a later time.

Otherwise,

The entry for the requested virtual tile is atomically
deleted from the local first level cache

The FSM waits until all outstanding messages to v have
been delivered (outstandingByDest[v] is zero)

The positive acknowledgement response is sent back to
the requester over the slave port of the control
network facing the owner units, as follows:

Send Response (control): Source=(same source
owner as in the request=00) Tag=(same tag as in
the request=t0) Opcode=acknowledge

Else, if the message is of the form

Receive Request (control): Source=(o0O=requesting
owner) Tag=(t0=tag) Dest=me Opcode=drain Vtile=
(v_src=virtual source tile to drain)

The control FSM waits until one of the following is

true, using atomic accesses when accessing the data

structures:

outstandingBySource|v_src] is zero (there are no more
pending messages sourced from virtual tile v_src and
from the present physical tile harness), and the
receiving FIFO of the slave port of the outbound
pre-communication network facing the attached
physical tile is empty, and v_src is not locked as a
virtual source tile (v_src is not in lockedSource), or

a time limit is exceeded.

The purpose is to wait until all messages emanating

from the virtual source tile v_src have been delivered,

or until a probable deadlock is detected.

If the time limit is exceeded first, the drain has failed,

and a negative acknowledgement is sent back:

Send Response (control): Source=(same source as in
the request=00) Tag=(same tag as in the request=t0)
Opcode=negative_acknowledge

Otherwise, the drain has succeeded, and a positive

acknowledgement is sent back:

Send Response (control): Source=(same source as in
the request=00) Tag=(same tag as in the request=t0)
Opcode=acknowledge

There are no other kinds of control requests.

The control FSM will not be software pipelined within the
physical tile harness, since physical tile configuration opera-
tions cannot be easily software pipelined. But an owner unit
can overlap control network requests to different physical
tile harnesses when dependences permit.

Owner Unit

Referring to the schematic in FIG. 14, in this section, we
will describe the owner unit, including its internal FSMs.
The set of all virtual tiles is partitioned to almost equal-sized
parts, using a simple hash algorithm; and each partition is
assigned to a separate owner unit, which takes responsibility
for managing the virtual tiles in its own partition.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Internal Memory State:
ptile: An owner unit is responsible for maintaining a map

ptile from each virtual tile it owns to a physical tile, in
case this pair is currently mapped to a physical tile, or
to NULL, in case this virtual tile is not currently
mapped.

sharers: For each virtual tile v that is mapped to a physical

tile p, the owner unit also keeps the set of physical tile
harnesses p' (=p) that have locally cached the (v—p)
mapping. This set of physical tile harnesses is called the
sharers of v. Maintaining this set is necessary for
identifying the local first level cache entries within
physical tile harnesses that should be invalidated, when
a physical tile is pre-empted; i.e., when it stops running
one virtual tile, and starts running another virtual tile.
Each set in the sharers map can be represented as a bit
string. One of the known directory entry compression
techniques can be used, when the number of physical
tiles is so large that a bit string representation is
impractical.

priorPtile: In addition, each owner maintains a map from

each virtual tile to the previous physical tile this virtual
tile was allocated to, if any. Initially this map priorPtile
is empty (all entries are NULL). Each time a virtual tile
v is de-allocated, its last physical tile is written into
priorPtile[v].

A multi-level cache hierarchy (whose lowest level is in

local off-chip DRAM near the present owner unit),
addressed by a virtual tile, is appropriate for the com-
bined implementation of ptile, sharers and priorPtile.
These data structures are shared by both the lookup
FSM and the allocation/deallocation FSM within the
owner unit. The accesses to these data structures must
be made to appear atomic, which can be achieved by a
multi-ported design, and/or a 2 to 1 network for arbi-
tration.

tileState: In addition, each owner has a map from virtual

tiles to tile states called tileState. The state of a virtual
tile is saved in this map. “Hypervisor storage,” men-
tioned earlier in this document, is implemented as the
tileState maps of each owner. Assuming that the states
of virtual tiles are large, it is best to implement both the
tags and the data part of the tileState map in off-chip
DRAM near the present owner unit, without using any
on-chip caches. The tileState data structure is accessed
only by the allocation/deallocation FSM of the owner
unit, hence atomic access to tileState within the owner
unit is not required.

The owner unit has the following internal FSMs:
The Lookup FSM
The lookup FSM has the following ports
A slave port of the lookup network facing the physical tile

harnesses: This port is used for receiving an
access_request, to look up the physical tile correspond-
ing to a given virtual tile, and to respond to the
requester with this physical tile. This port is also used
for receiving an abandon request indicating that a
particular physical tile harness wishes to stop sharing a
(v—p) mapping in its local cache, where virtual tile v
is among the responsibilities of the present owner.

A master port of the replacement tile selection network

facing the monitor: This master port is used to send a
tile_request to the monitor, which will respond with a
physical tile to pre-empt, using the pre-decided tile
replacement algorithm. It is also used to send a
tile_unlock request for a physical tile to the monitor

US 9,465,632 B2

33

unit, informing the monitor unit that the deallocation/
allocation activities on that physical tile are complete.

A master port of the allocation/deallocation network fac-

ing owners, in particular the local allocation/dealloca-
tion FSM of the present owner. This master port is used
to allocate a virtual tile to a physical tile or to deallocate
a virtual tile from a physical tile. A request to drain the
communication network of the remaining pending mes-
sages emanating from a given virtual tile is also sent
across this network.

The lookup FSM executes the following steps in an
unending loop:

The lookup FSM waits for a request from the slave port
of the lookup network facing physical tile harnesses.
Access Request

If the incoming message is an access request of the form:

Receive Request (lookup): Source=(pO=requesting physi-

cal tile harness) Tag=(t0=tag) Dest=me
Opcode=access_request Vtile=(v=virtual tile)

Atomically do: read p=ptile[v]; if(p!=NULL) add p0 to

sharers|v]; p'=priorPtile[v].

If the virtual tile v whose physical tile is requested, is not

mapped to a physical tile in the present owner

If there was a prior physical tile p' that v was mapped to

(p''=NULL)

Attempt to ensure that all messages from v at the time
when v was on p', reach their destination, by sending
a drain request to my own allocation/deallocation
FSM:

Send Request (allocation/deallocation): Source=(re-
questing owner=me) Tag=(t1=new tag) Dest=me
Opcode=drain Vtile=(virtual tile=v) Ptile=(last
physical tile of v=p')

where the drain operation will: either succeed and
return a positive acknowledgement to the present
owner
Receive Response (allocation/deallocation):

Source=(same source as the request=me) Tag=
(same tag as the request=t1)
Opcode=acknowledge

or, the drain operation will fail (e.g., due to a deadlock
in high contention conditions) and will return a
negative acknowledgement after a timeout.
Receive Response (allocation/deallocation):

Source=(same source as the request=me) Tag=
(same tag as the request=t1)
Opcode=negative_acknowledge

If there is a prior physical tile p' that v was allocated to

(p"'=NULL), and the attempt to drain the messages

from v on p' failed:

The required physical tile parameter (Required_ptile)
p" to be sent to the monitor unit, is set to p'; doing so
forces the physical tile returned by the monitor to be
identical to the old physical tile p'

otherwise

The required physical tile parameter (Required_ptile)
p" is set to NULL, so that the monitor unit is free to
return an arbitrary new physical tile.

The lookup FSM then sends the request

Send Request (replacement tile selection): Source=
(requesting ~ owner=me) Tag=(t2=new tag)
Dest=Monitor Opcode=tile_request Vtile=(virtual
tile=v) Required_ptile=p",

to the monitor unit over the master port of the replacement
tile selection network, and then receives a response of
the form

10

15

25

30

35

40

45

55

60

65

34
Receive Response (replacement tile selection):
Source=(same source as in the request=me) Tag=
(same tag as in the request=t2)

Opcode=tile_response Vtile=(v'=Previous virtual

tile allocated to p) Ptile=(p=Physical tile to preempt)

from the same master port of the replacement tile selec-
tion network.

The monitor can also respond with a negative_acknowl-
edge to a tile_request when all eligible physical tiles are
locked (i.e., are currently being reconfigured). In this
case the tile_request is resent by the present owner after
a delay time, until a valid physical tile is received.

Here, v' is the virtual tile that is currently mapped to the
selected physical tile p, which will be pre-empted. The
monitor maintains an accurate map from each physical
tile to the virtual tile it contains, if any. If nothing is
currently mapped to the physical tile p, v=NULL is
returned by the monitor.

If v' is not NULL (there is an occupant virtual tile v' on
p)

The lookup FSM sends a
Send Request (allocation/deallocation): Source=(re-

questing owner=me) Tag=(t3=new tag) Dest=
(03=owner of v') Opcode=deallocate Vtile=(vir-
tual tile to deallocate=v) Ptile=(physical tile v' is
presently mapped to=p)

To the owner 03 of v' (determined by computing a hash
function of v'), over the master port of the allocation/
deallocation network. Note that the owner of v' may
be different from the present owner, or it could be the
same as the present owner.

The lookup FSM waits for an acknowledgement
response from o3, from the same master port.
Receive Response (allocation/deallocation):

Source=(same source as in the request=me) Tag=
(same tag as in the request=t3)
Opcode=acknowledge

At this point p is an empty physical tile. The lookup FSM
sends a
Send Request (allocation/deallocation): Source=(re-

questing owner=me) Tag=(t4=new tag) Dest=me
Opcode=allocate Vtile=(virtual tile=v) Ptile=(physi-
cal tile=p) Sharer=(sharer physical tile=p0)

to its own allocation/deallocation FSM, over the master
port of the allocation/deallocation network (the request
asks that v be allocated to p, and that p0 be made a
sharer of the (v—p) mapping)

The lookup FSM waits for an acknowledgement response
from the same master port
Receive Response (allocation/deallocation): Source=

(same source as in the request=me) Tag=(same tag as
in the request=t4) Opcode=acknowledge

At this point, the requested mapping v—p is already in the
map of this present owner unit, and p is known, and the
requester physical tile p0 has already been added to the
sharers list for v.

Then, the lookup FSM returns the physical tile p as the
response to the requesting physical tile harness p0, over
the slave port of the lookup network:

Send Response (lookup): Source=(same source as in the
request p0) Tag=(same tag as in the request=t0)
Opcode=access_response Ptile=(physical tile=p)

Finally the physical tile p being pre-empted is unlocked in
the monitor, to signal that deallocation allocation
activities on p are complete, by sending the following
request and receiving its acknowledgement:

US 9,465,632 B2

35

Send Request (replacement tile selection): Source=me
Tag=(t5=new tag) Dest=Monitor Opcode=unlock_tile
Ptile=(physical tile=p)

Receive Response (replacement tile selection): Source=
(same source as in the request=me) Tag=(same tag as in
the request=t5) Opcode=acknowledge

Abandon Request

If the request is an abandon request of the form:

Receive Request (lookup): Source=(pO=source physical
tile harness) Tag=(t0=tag) Opcode=abandon Vtile=
(v=virtual tile) Ptile=(p=physical tile)

Atomically do:

If' v is mapped to p (ptile[v]==p), and pO0 is a sharer of this
mapping (p0 is is among sharers[v]):

Remove the physical tile pO from the sharer list of
virtual tile v (sharers[v])

Else
Do nothing

If the sharer p0O was removed

Send back the response:

Send Response (lookup): Source=(same source as in
the request p0) Tag=(same tag as in the request=t0)
Opcode=acknowledge

Else

Send back a negative acknowledgement response
Send Response (lookup): Source=(same source as in

the request=p0) Tag=(same tag as in the request=t0)
Opcode=negative_acknowledge

The lookup FSM can be software-pipelined subject to
normal sequential execution constraints. For example, if a
first access_request to a virtual tile results in a miss in the
ptile map, a second access_request to the same virtual tile
must wait until the first request is processed and the ptile
data structure is updated. However, a second request to a
different virtual tile can proceed independently of the first
request.

Allocation/Deallocation FSM

The allocation/deallocation FSM has the following ports:

A master port of the control network facing physical tile
harnesses: This port is used to send shutdown_an-
d_read_state and write_state requests to a physical tile
harness, invalidate a local first level cache entry within
a physical tile harness, and also drain the pending
messages emanating from a particular virtual tile and
particular physical tile.

A slave port of the allocation/deallocation network facing
owner units (including the present owner unit).
Requests to allocate a virtual tile to a physical tile, or
to deallocate a virtual tile from a physical tile, or to
drain the pending messages emanating from a particu-
lar virtual tile, where the virtual tile is owned by the
present owner unit, are serviced at this port.

The allocation/deallocation FSM shares the ptile, priorP-
tile and the sharers data structures with the lookup FSM. The
accesses to these data structures should be atomic.

The allocation/deallocation FSM performs the following
steps in an unending loop
Deallocate Request

If there is a deallocate request of the form:

Receive Request (allocation/deallocation): Source=
(o0=requesting owner) Tag=(t0=tag) Dest=me
Opcode=deallocate Vtile=(v'=virtual tile to deallocate)
Ptile=(p=physical tile v' is now allocated to)
Atomically do: A mapping (v'—p) should be present in

the present owner unit (i.e., ptile[v']==p). Save the
sharers list of v', s=sharers[v']. Remember the old

15

25

40

45

50

60

36
mapping of v', by setting priorPtile[v']|=ptile[v'].
Delete the map entries ptile[v'] and sharers [v'].

For each p' in the saved sharers list s of the mapping
(V'=p)

Send an invalidate v' request to physical tile harness

p' over the master port of the control network and

receive an acknowledgement over the same mas-

ter port.

Send Request (control): Source=(requesting
owner=me) Tag=(tl=new tag) Dest=(physical
tile harness=p') Opcode=invalidate Vtile=(vir-
tual tile to invalidate=v")

Response (control): Source=(same source as in the
request=me) Tag=(same tag as in the
request=t1) Opcode=(w=invalidate response)

Retry the invalidate request while the response w is

a negative_acknowledge (i.e., there is an ongoing

access request for v' in p'), until a (positive)

acknowledge response comes back

The iterations of this last for loop for the invalidate
requests can be executed in parallel; the invalidation
requests sent to multiple sharers can be overlapped.

Send the physical tile harness p a shutdown_and_
read_state request over the master port of the control
network facing the physical tile harnesses

Send Request (control): Source=(requesting
owner=me) Tag=(t2=new tag) Dest=(physical tile
harness p) Opcode=shutdown_and_read_state

Receive the tile state data as the response.

Receive Response (control): Source=(same source as in
the request=me) Tag=(same tag as in the request=t2)
Opcode=read_state_response Tilestate=(st=state
data)

Then, write the tile state data into this owner’s local
tileState map

tileState[v]=st

The receiving and writing of the tile state data should be
pipelined, for large states.

Finally, as the response to the deallocate request, send an
acknowledgement

Send Response (allocation/deallocation): Source=
(same source as in the request=00), Tag=(same tag as
in the request=t0) Opcode=acknowledge back to the
requesting owner unit, over the slave port of the
allocation/deallocation network.

Allocate Request
Otherwise, if there is an allocate request of the form:

Receive Request (allocation/deallocation): Source=
(o0=requesting owner) Tag=(t0=tag) Dest=me
Opcode=allocate Vtile=(v=virtual tile) Ptile=

(p=physical tile) Sharer=(pO=sharer physical tile)
Atomically do:
//ptile[v] must be NULL
set ptile[v]=p; sharers [v]={p0}
Read the state data for the virtual tile from the local
storage of this owner
st=tileState[v]
Write the new state of physical the p, by sending
Send Request (control): Source=(requesting
owner=me) Tag=(t1=new tag) Dest=(physical tile to
reconfigure p) Opcode=write_state Tilestate=(state
data=st)
to the physical tile harness p over the master port of the
control network. The reading and sending of the tile
state should be pipelined for large states.
Wait for the acknowledgement response for the writ-
€_state message

US 9,465,632 B2

37

Receive Response (control): Source=(same source as in
the request=me) Tag=(same tag as in the request=t1)
Opcode=acknowledge

After this response is received, the virtual tile v must be
running on p.

Send back the response
Send Response (allocate-deallocate): Source=(same

source as in the request=00) Tag=(same tag as in the
request=t0) Opcode=acknowledge

over the slave port of the allocate/deallocate network.
Drain Request

If there is a drain request of the form:

Receive Request (allocation/deallocation): Source=
(o0=requesting owner) Tag=(t0=tag) Dest=me
Opcode=drain Vtile=(v_src=virtual source tile) Ptile=
(p=physical tile)

Send a

Send Request (control): Source=(requesting owner=me)
Tag=(tl=new tag) Dest=(physical tile to drain=p)
Opcode=drain Vtile=(virtual source tile=v_src)

message to the physical tile harness p over the master port
of the control network

Wait for the response for the drain message

Receive Response (control): Source=(same source as in
the request=me) Tag=(same tag as in the request=tl)
Opcode=(w=response opcode)

where the response opcode w is either acknowledge or
negative_acknowledge

Send back the response

Send Response (allocate-deallocate): Source=(same
source as in the request=00) Tag=(same tag as in the
request=t0) Opcode=w

over the slave port of the allocate/deallocate network.

The allocation/deallocation FSM can be software pipe-
lined, subject to sequential dependencies.

Monitor Unit

Referring to the schematic in FIG. 15, in this section, we
will describe the internal organization of the monitor unit,
including its internal FSM.

The monitor unit is used to detect the activity within each
of'the physical tiles, analyze the activity and suggest the best
physical tile to pre-empt to owners who request a new
physical tile to pre-empt. Each physical tile periodically
sends its state to the monitor unit. In a system with N
physical tiles, this can be done by an ordinary N to 1
incomplete butterfly sub-network as described in [Super-
computer|, which can also cross chips in the usual way. But
creating a customized pipelined token-ring network to
achieve the N to 1 unidirectional communication requires
less hardware. The customized pipelined token ring network
can be implemented by a 1D torus (or ring) network which
also passes through the monitor unit. Immediately after
system reset time, for each physical tile p in the system, a
packet that shall be owned and updated by p is injected into
the ring, initially indicating that this tile p is nor working
(i.e., idle). Normally, each physical tile forwards each
incoming packet to the next node in the ring. However, when
the physical tile’s own packet (a packet whose id field is
equal to the present physical tile) is passing by, the packet
is updated with the present physical tile’s current status,
before being forwarded to the next node in the ring. The
monitor is located between the last physical tile and the first
physical tile in the ring. The monitor unit gets a packet from
the last physical tile, updates its data structures as the packet
from each physical tile passes by, and forwards the packet to
the first physical tile. When asked for a tile to pre-empt, the

10

15

20

25

30

35

40

45

50

55

60

65

38

monitor unit analyzes the data from all the physical tiles and
returns the best tile to pre-empt, according to its replacement
algorithm.

A Simple Scalable Implementation of the Least Recently
Used Policy:

We begin with a scalable baseline algorithm for true LRU
replacement of tiles. Let us call the time from the point
where a physical tile’s own packet passes the physical tile
and the point where its own packet passes the physical tile
again, a time interval of the physical tile. Assuming that each
time interval where the physical tile was active at least for
one cycle, is considered a “reference” to the physical tile (as
if in a reference to a data page in a virtual memory system),
the least recently used algorithm can be simply implemented
by mimicking the following software algorithm for LRU
insertion in a doubly-linked list, as shown in the code below.
Two sentinel list elements called “back” and “front” are
placed at the back and front of a doubly linked list. A
“reference” to a physical tile i consists of a deletion of node
i from its current location (loads from flink[i] and blink][i],
and stores into flink[blink [i]] and blink[flink[i]]) and a
re-insertion of physical tile i just before front sentinel
element (stores into flink[blink[front]], where blink[front] is
cached in a register, and into flink[i] and blink[i]). The
number of loads/stores is as follows: 1 load from the flink
array, 1 load from blink array, 2 stores into the blink array,
and 3 stores into the flink array. The 2 loads can be done in
parallel in step 1 , and then the 5 stores can be done in
parallel in step 2, if memory port resources permit. Depend-
ing on the number of ports in the available memory arrays
and the total number of tiles, the entire “reference” operation
will require only a few cycles. The number of ports of the
memory arrays can be increased in known ways, e.g., by
bank-interleaving and/or by using multi-ported arrays.

//A doubly-linked list
//specification of
//the Least Recently Used replacement policy
typedef Int12 TileIndex;
/up to (2**12)-2 tiles in this example
class LRU {
public:
static const TileIndex front=N, back=N+1;
TileIndex blink[N+2];//backward link
TileIndex flink[N+2];//forward link
LRU() { //initialization
TileIndex prev=back;
for(TileIndex i=0;i<=front; ++i) {

blink[i]=prev;
flink[prev]=i;
prev=i;

//blink[back], flink[front] not used

void reference(const TileIndex i) {
//place the referenced tile i in MRU position
//delete i from its current place
flink[blink[i]]=flink[i];
blink[flink[i]]=blink[i];
/fadd it just before the front element
//blink[front] can be cached in a register
flink[blink[front]]=i;

flink[i]=front;
blink[i]=blink[front];
blink[front]=i;

US 9,465,632 B2

39

The Internal Data Structures

The internal data structures of the monitor unit are as
follows

flink and blink arrays for implementing the LRU doubly
linked list, as described above.

vtile: an array mapping each physical tile to the virtual tile
it contains, or to NULL, in case this physical tile does
not contain any virtual tile

working: an array mapping each physical tile to a Boolean
value indicating that the physical tile was still working
(was not idle) in the last time interval. The working
attribute of a physical tile is updated with an incoming
message from the statistics network, only when the
physical tile is not locked.

isfree: an array mapping each physical tile to Boolean
value, where isfree[p] is true if and only if p is currently
not locked (i.e. not currently being configured).

At initialization time: the LRU doubly linked list is
initialized to a default order, e.g., the sequential order of the
physical tiles as shown above. For all physical tiles p,
vtile[p] is set to NULL and working|[p] is set to false, and
isfree[p] is set to true. But, for pinned physical tiles p
representing the application placeholder tiles, vtile[p] is set
to virtual tile -1 of the respective application and working[p]
is true, and isfree[p] is set to false (so that p will never be
pre-empted).

The Monitor FSM

The monitor FSM has the following ports:

A slave port to the tile replacement network facing owner
units.

A slave port of the statistics network described above
facing the physical tiles. This unidirectional slave port
only accepts requests; it does not send back responses.

The monitor FSM repeatedly performs the following in a
unending loop:

If there is a tile_request in the slave port of the replace-

ment tile selection network, of the form:

Receive Request (replacement tile selection): Source=
(00=requesting owner) Tag=(t0=tag) Dest=me
Opcode=tile_request Vtile=(v=virtual tile the owner
is trying to map) Required_ptile=(p'=required physi-
cal tile)

If the required physical tile p' is not NULL

Set eligible={p'}//The monitor must respond with p'".

Else

Set eligible=the set of all physical tiles except place-
holder tiles

Starting from the LRU element (flink|back]), follow

the linked list in the forward link direction until a

physical tile p that satisfies (isfree[p] and eligible[p]),

if any, is found.

Optionally apply additional heuristics to choose p
among multiple free and eligible candidates

If no such tile p could be found (all eligible physical

tiles are locked),

Send back the response
Send Response (replacement tile selection): Source=

(same source as in the request=00) Tag=(same tag
as in the request=t0)
Opcode=negative_acknowledge

Else // p is the physical tile satisfying the desired

properties

Using the physical tile p that was found, send back the
response
Send Response (replacement tile selection): Source=

(same source as in the request=00) Tag=(same tag
as in the request=t0) Opcode=tile_response Vtile=

10

15

20

25

30

35

40

45

50

55

60

65

40

(previous virtual tile mapped to p=vtile[p])) Ptile=
(physical tile to return to owner p)

Set vtile[p]=v to remember the new virtual tile v now
on p. Set working[p]=true. Set isfree[p]=false (lock
the tile)

Simulate a reference to p so it moves to the front (Most
Recently Used) position of the LRU list

Else if there is a request in the slave port of the replace-
ment tile selection network:

Receive Request (replacement tile selection): Source=
(0o0=requesting owner) Tag=(t0=tag) Dest=me
Opcode=tile_unlock Ptile=(p=physical tile to
unlock)

Set isfree[p|=true (unlock tile p)

Send back the acknowledgement response

Send Response (replacement tile selection): Source=
(same source as in the request=00) Tag=(same tag as
in the request=t0) Opcode=acknowledge

Else if there is a request in the slave port of the statistics
network:
Receive Request (statistics network): Dest=me

Opcode=status_update Ptile=(p=sending physical
tile) Working=(b=Boolean value)
If the physical tile p is not locked (isfree[p] is true)
Set working[p]=b
If b is true (the physical tile was not idle in its rime
interval), update the LRU data structure (flink, blink)
with a reference to p.
A response is not required for the statistics request.
Else
Do nothing in this loop iteration
The monitor should answer requests sufficiently faster
than the average tile replacement rate in the entire hypervi-
sor system. Otherwise, the monitor will become a bottleneck
in the hypervisor system. Optimization 4 below describes
ways to accomplish this scalability requirement.
Solutions to Race Conditions
In this section, we will summarize five important potential
race condition errors within a highly parallel implementation
of'a hypervisor, and show how these errors are eliminated by
the present design. These race conditions will also help
explain the design choices made in the present preferred
embodiment.
Access Request Followed by Invalidate Causes Invalidate to
be Lost
Desired logical sequence of events:
Initially, physical tile p1°s local cache does not contain
virtual tile v
Initially, virtual tile v is mapped to physical tile p in the
owner ol of v; physical tile pl is not a sharer of this
mapping.
Physical tile pl sends an access_request for v, to ol,
and gets p back. pl is established as a sharer of the
(v—p) mapping within o1 The entry (v—p) is added
to the local cache of pl.
ol then sends “invalidate v’ to pl, causing the local
cache entry (v—p) to be deleted in pl.
An actual sequence of events with a race condition error
is shown below
pl sends “access_request v’ to ol
ol receives “access_request v’ from pl
ol sends “access_response p” to pl
ol sends “invalidate v” request to pl (ol is de-allocat-
ing v from p)
pl receives “invalidate v” request from o1 (incorrect, v
is not present in the local cache of p1). Notice that

US 9,465,632 B2

41

the networks may have different latencies, causing
the “access_response p” message to be delayed.

pl receives “access_response p” from ol, and places
(v—p) in its local cache (incorrect, v should not be
in p1’s local cache at the end)

Solution:

the “invalidate v”” request from o1 to p1 will find v locked
in pl (by virtue of the lockedDest data structure of a physical
tile harness which is checked by invalidation requests). ol
will get a negative acknowledgement for the invalidation
request. The failing invalidation request will then be retried
by ol.

Superfluous Abandon

Since the local cache is not instantly updated after
changes to the owner data structures because of network
delays, an abandon request for (v—p) can potentially be sent
out by pl and can then spend a lot of time in the network,
even though the (v—p) mapping has already been deleted at
the owner of v, pl has been removed as a sharer of this
mapping, and further changes have been done for v at the
owner, during the transit time of the abandon message. Here
an sequence of events showing the incorrect race condition:

Initially: (v—p) is present in p1’s local cache

Initially: ol is v’s owner and has a (v—p) mapping

pl sends “abandon v” to ol,

ol sends “invalidate v’ to p1; ol deallocates v in p, v is

deleted from ol’s map, pl ceases to be a sharer of v.

ol allocates v in p', (v—p') is added to 01’s map

o1 receives “abandon v” (incorrect, “abandon v” from p1

is now a stale request)

Solution:

abandon is made transactional; it is either committed or
aborted. If o1 does not still have v mapped to p or pl is not
a sharer of the (v—p) mapping, abandon v will get a
negative acknowledgement and the abandon request will
become a no-op. Another abandon (possibly to a different
virtual tile) can be retried by pl, if needed for making space
in the local cache of pl.

Incoming Message Destined to Virtual Tile v Arrives Late,
after v has been Deallocated

Obviously, we do not want a message going to virtual tile
v to arrive at a physical tile p, after the destination virtual tile
v has been deallocated from p. This is solved by ensuring,
with extra quiescence detection hardware (outstandingByD-
est outstanding message counter array and an additional
reverse subnetwork where acknowledgements flow in the
reverse direction of the regular communication messages),
that all pending messages going to v at p have arrived at v
at p, before v gets deallocated from p.

Incorrect Message Reordering Due to Migrating a Virtual
Tile

Here is a sequence of events demonstrating an incorrect
message reordering

Initially virtual tile v1 is on physical tile p1, virtual tile v2

is on physical tile p2

vl on pl sends message number 1 to v2 on p2

Message 1 gets delayed in the network

vl gets deallocated from pl

vl gets allocated to p3

v1 on p3 sends message number 2 to v2 on p2

Message 2 arrives at v2 before message 1 (incorrect, since

messages from v1 to v2 have been reordered)

Solution:

With extra quiescence detection hardware (outstanding-
BySource counters, acknowledgement paths in communica-
tion network), messages from v1 on pl are drained from the
network, i.e., messages are made to reach their destination

10

15

20

25

30

35

40

45

50

55

60

65

42

before v1 is reallocated on a different physical tile. In case
draining the messages from v1 on p1 is not possible (because
for example, of a circular wait/deadlock condition), v1 is
again allocated to its old physical tile p1 without draining its
old pending messages, in which case message reordering
will not occur.

A circular wait/deadlock condition can occur when
attempting to drain messages, for example, when an access
request no. 2 for a message from vl1, is waiting in the same
owner’s input FIFO for an access request no. 1 for a message
to v1, where v1 is currently not allocated in any physical tile.
We have chosen the present simple way to solve this
deadlock problem (reallocate v1 in its old physical tile if
unable to drain its pending outgoing messages). Reordering
the access requests in the owner access request queue may
be another way to avoid this kind of deadlock.

Physical Tile Gets Preempted for a Second Time while a
Logically Earlier Preemption is in Progress

Here is a sequence of events demonstrating a preemption
race condition:

Owner unit o1 asks monitor for a tile to preempt, to place

virtual tile v1.

Monitor returns empty physical tile pl to ol

Owner unit 02 asks monitor for a physical tile to preempt,

to place virtual tile v2,
Monitor returns physical tile pl (now presumed by the
monitor to contain v1) again to 02

02 attempts to allocate v2 on pl, by first asking ol to
deallocate v1 from pl (incorrect; ol has not yet allo-
cated v1 on pl)

Solution:

at the time the physical tile p1 is returned by the monitor
to ol, the physical tile pl becomes locked. It will be
unlocked only when ol has finished all reconfiguration
activities and sends a “tile_unlock™ request for this physical
tile p1 to the monitor. When all eligible tiles are locked, the
monitor returns a negative acknowledge to tile requests, so
the request will be retried.

Without locking, repeated choice of the same physical tile
by the monitor is quite possible, for example, when the
eligible physical tiles satisfying a tile request are few in
number.

Optimizations
Apart from the baseline hypervisor described above,
various optimizations of a hypervisor are possible. We list
these optimizations and additional features below.
1. Obtaining a Virtual Supercomputer Automatically from
a Single-Threaded Software Application
This optimization is facilitated because a method to obtain
a non-virtual (real) supercomputer from a single-threaded
software application is already described in the co-pending,
co-owned US patent application [Supercomputer|, which
has already been incorporated by reference. Here, we will
provide the enhancements to [Supercomputer]| in order to:
Create a virtual supercomputer instead of a real one from
a single-threaded software application, and

Run the resulting (software application, virtual supercom-
puter) pair within the present hypervisor system envi-
ronment.

Much of the technology described in [Supercomputer| can
be used verbatim in the present hypervisor system, once a
one-to-one correspondence between the concepts of [Super-
computer| and the concepts of the present hypervisor system
is established. Here is the required one-to-one correspon-
dence:

US 9,465,632 B2

43

The single-threaded software application/program men-
tioned in [Supercomputer], from which a (non-virtual)
supercomputer is obtained, corresponds to:

The software application part of a (software applica-
tion, virtual supercomputer) pair in the present
hypervisor system;

The (non-virtual) supercomputer obtained from a pro-
gram fragment of a software application in [Supercom-
puter]|, corresponds to:

The virtual supercomputer within a (software applica-
tion, virtual supercomputer) pair within the present
hypervisor system;

Each partition of the (non-virtual) supercomputer in [Su-
percomputer|, obtained by final design partitioning,
corresponds to:

a virtual tile of a virtual supercomputer within a (soft-
ware application, virtual supercomputer) pair in the
present hypervisor system;

A union chip capable of realizing each partition of the
(non-virtual) supercomputer in [Supercomputer], cor-
responds to:

a physical tile, capable of realizing any of the virtual
tiles of the virtual supercomputer within a (software
application, virtual supercomputer) pair in the pres-
ent hypervisor system.

The union chip hardware produced by the method of
[Supercomputer] is adapted with slight modifications for use
as a physical tile of the present hypervisor system, as
follows:

For construction of a physical tile, the chip unioning
technique described in paragraphs [00169]-[00190] and
Appendix K of [Supercomputer], is used. The union chips of
[Supercomputer| are configured once during system initial-
ization time, by initializing the configuration memory in
each chip. The configuration memory identifies the particu-
lar partition which will be realized by the union chip. But in
the hypervisor system, each physical tile (union chip of
[Supercomputer]|) will be reconfigured multiple times, on
demand. Therefore, not only the configuration memory but
also the normal (execution state) memory and registers of
the physical tile need to be read out and written. Assuming
the simple method of stopping the clock is used to stop a
virtual tile, reconfiguring a physical tile will consist of
writing the configuration memory as well as the normal
execution memory and registers, through one or more scan
chains. Circuitry will be added to stop the clock, read out the
registers and memories (including the configuration
memory), write the registers and memories (including the
configuration memory), and finally restart the clock.

A union chip of [Supercomputer| with n hypercube links
will support a real supercomputer system having (2")+1 to
2" chips, and will also include an incomplete hypercube
deterministic router within it. But for the physical tile of the
hypervisor, the partitioned communication network among
physical tiles will already have such incomplete hypercube
deterministic routing; therefore, it is not necessary to have n
links, nor is it necessary to do internal hypercube routing
within the physical tile. The physical tile will thus be
simplified, and its internal 1/O controller will have only one
external communication I/O link (a sending FIFO interface
(outbound pre-communication) and a receiving FIFO inter-
face (inbound pre-communication)), as if it were part of only
a l-cube.

Based on the techniques described in detail in the speci-
fication and claims of [Supercomputer] and also in the
present section, here are then the steps of a method for
automatically converting an arbitrary single-threaded soft-

10

15

25

35

40

45

50

44

ware application to the pair (modified version of said
application, virtual supercomputer that accelerates the said
application), which can then be integrated and deployed
within a hypervisor system. The first four steps below are
taken directly from [Supercomputer]. In the method below,
the term “union chip” used in [Supercomputer]| has been
changed below to “union module,” since now it is not by
itself a chip; it instead has become a physical tile that is part
of a larger chip (the cloud building block).

a) Converting an arbitrary code fragment from the single-
threaded software application into customized non-
virtual supercomputer hardware whose execution is
functionally equivalent to the software execution of the
code fragment;

b) Generating interfaces on the hardware and software
parts of the application, which:

i. Perform a software-to-hardware program state trans-
fer at the entries of the code fragment;

ii. Perform a hardware-to-software program state trans-
fer at the exits of the code fragment; and

iii. Maintain memory coherence between the software
and hardware memories.

¢) Partitioning the non-virtual supercomputer obtained in
steps a) and b) into multiple modules;

d) Creating a union module which is capable of realizing
any of the modules created by step ¢) depending on the
configuration parameters provided to the union mod-
ule;

e) Creating an (application, virtual supercomputer) pair
wherein:

i. The application part of the said pair is the single-
threaded software application as modified in step b);

ii. The virtual supercomputer part of the said pair
consists of virtual tiles, each of which is a module
obtained in step c);

f) Adding the functionality to stop, start, read the internal
state, and write the internal state of the union module
of step d); to create the physical tile capable of realizing
any among the set of virtual tiles of step e); and

g) Integrating at least one copy of the physical tile
obtained in step f) within the hypervisor system, to
realize the said (application, virtual supercomputer)
pair within the hypervisor.

2. Semi-Reconfigurable ASIC Physical Tiles

In our preferred embodiment of the hypervisor system,

multiple versions of the physical tiles can be created in ASIC
technology, each one customized for an important customer
application. Also, another physical tile version in ASIC
technology can realize a virtual tile of the “compiler-friendly
general purpose supercomputer” (as described in at least the
optimization 5 starting on p. 144, paragraphs [00274]-
[00275] and FIGS. 60 and 61 of [Supercomputer]). Then, the
physical tiles can be distributed within the data center, based
on the expected percentage of computational resource usage
by customer applications. For example, a cloud building
block chip containing the physical tiles of a given less
frequently used application A can be assigned to only one
rack module, while cloud building block chips containing
the physical tiles of a more frequently used application B can
be placed in an entire rack. The remaining rack modules can
consist of physical tiles implementing the “compiler-
friendly general-purpose supercomputer union chip” [Super-
computer|. Physical tiles built out of FPGA technology can
also be included in the data center, for new virtual super-
computer development (before an ASIC version of the
physical tile is released). Either “compiler friendly general
purpose supercomputer union chip” [Supercomputer| physi-

US 9,465,632 B2

45

cal tiles, or FPGA physical tiles can be used for applications
for which there is no ASIC physical tile yet, or for appli-
cations which do not warrant the development of an ASIC
physical tile.

When sufficient customer demand has accumulated for
particular applications, multi-project wafer (MPW) service
can be used to reduce the costs of low volume production of
new ASIC physical tiles for implementing a virtual super-
computer for these applications. L.e., at each periodic run of
the MPW service new popular customer applications col-
lected and analyzed during the last time period can be
included in the run.

The availability of

(1) An automatic process for converting a single threaded

application into a virtual supercomputer which can
share the resources of a data center, as described in the
present document and [Supercomputer|, and

(ii) At least one means for low-volume production of

ASIC physical tiles at a reasonable cost;

(iii) Recent advances in RTL to GDS-II conversion tech-

nologies for automated ASIC design;
Together open up new possibilities for creating energy
efficient, high performance data centers based on ASIC
physical tiles. Following this train of thought, an adaptive
application-specific hardware lifetime management policy
can be created, for allocating space to application-specific
hardware in a data center, wherein the policy comprises the
following steps:

a) Determining the frequency of use of each (application,

virtual supercomputer) pair over a recent time interval;

b) Searching for an (application, virtual supercomputer)

pair that has the greatest frequency of use as deter-

mined in step a), such that

The pair is not already mapped to an ASIC physical tile;
and

The frequency of use of the said pair exceeds a thresh-
old;

¢) If such a pair could be found in step a), creating a new

ASIC physical tile for this pair;
d) For each ASIC physical tile in the hypervisor system:
Increasing or decreasing the resources allocated to this
ASIC physical tile, in order to make the allocated
resources proportional to the average frequency of
use of the (application, virtual supercomputer)
implemented by this ASIC physical tile;

e) Repeating all of the steps above, periodically.

The frequency of use of an (application, virtual super-
computer) pair can be measured, for example, as the ratio of
the cumulative time spent in the virtual tiles of the said pair
divided by the cumulative time spent in all applications in
the last time period). The number of ASIC physical tiles
installed in the data center should be proportional to the
average frequency of use of the ASIC physical tile. But for
important applications, the number of the physical tiles
should be slightly higher than the average working set, in
order to accommodate peak demand as well.

Of course, the data center cannot keep expanding with
new hardware forever. Through time, the frequency of use of
applications will change. To rebalance the allocation of data
center space to different kinds of applications, less fre-
quently used ASIC physical tiles can be periodically
replaced by more frequently used ASIC physical tiles,
according to the policy given above.

It is more practical to make the “field replacement unit”
a rack module containing cloud building block chips, which
in turn contain copies of a particular application-specific
physical tile. Obsolete application-specific rack modules in

10

15

20

25

30

35

40

45

50

55

60

65

46

the data center, which are no longer being used, will
therefore be replaced over time, by application-specific rack
modules for new customer applications.

Another way to distribute the physical tiles, which
reduces the number of ASIC chips being released but
increases the chip size, is to create a single chip kind,
namely, a larger cloud building block chip that has, for
example, a few physical tiles implementing A, some other
physical tiles implementing B, some physical tiles realizing
FPGA technology, and the remaining physical tiles imple-
menting the “compiler-friendly general purpose supercom-
puter union chip” [Supercomputer]. In this case, the space
on this large cloud building block chip can be allocated to
applications using a similar application-specific hardware
lifetime management policy over the generations of the chip.
Each generation of the cloud building block will thus be
tailored for applications currently considered important for
the target customer community, as older generations of the
cloud building block chip become obsolete.

3. Virtualizing Operating Systems

It suffices to make only a few changes to the baseline
hypervisor system, in order to virtualize an entire operating
system (OS) accelerated by a supercomputer, as opposed to
just a user application accelerated by a supercomputer.

The local virtual tile O within a virtual supercomputer for
an OS will be reserved: it will contain a general purpose
commodity microprocessor which will run the OS. The
microprocessor of local virtual tile 0 may share its
access path to DRAM units with other hardware units
in the system, or may have its own memory. Local
virtual tile 0 communicates with its environment only
with standard inter virtual-tile messages previously
described in the hypervisor system in this document;
thus the OS will implement a simplified /O system
using fast network access only.

The application placeholder local virtual tile -1 (origi-
nally with a PCI Express connection to the host pro-
cessor system), is replaced by a OS placeholder local
virtual tile also numbered -1, with a high speed Eth-
ernet connection to the internet. The OS placeholder
virtual tile is initially allocated to a suitable physical
tile with an Ethernet connection, and pinned at system
reset time to that physical tile: it will not be de-
allocated.

The Ethernet connection will be responsive to a main
1P address reserved for the particular operating sys-
tem instance, which be used for exchanging mes-
sages with the OS running in local virtual tile 0;

The Ethernet connection will also be responsive to a
secondary IP address reserved for exchanging mes-
sages with a selected virtual tile of the virtual super-
computer other than local virtual tile O, to achieve
hardware-accelerated, fast internet communication
without going through the legacy OS software lay-
ers. This direct internet access capability is critical
for creating fast pipelined customized hardware
engines for web services, for example.

One can also keep the standard PCI express connection,
and let the software application on the host computer
attached to PCI Express simulate the primary and
secondary internet connections. This will make the
virtual hardware-accelerated OS appear to be an ordi-
nary software application, encapsulated within a com-
modity host computer and commodity OS.

Here are some examples of the operation of the virtual

hardware-accelerated OS: At the Ethernet connection of the
OS placeholder tile, an inbound IP packet destined to the

US 9,465,632 B2

47

main [P address will be converted to a standard inter
virtual-tile message from local virtual tile -1 to local virtual
tile 0. The payload of a standard message sent from local
virtual tile O to local virtual tile -1 will be sent out as an
outbound IP packet by the OS placeholder tile, using the
main IP address. A designated local virtual tile different from
0 can also communicate with the internet directly, by
exchanging messages with local virtual tile —1. Local virtual
tile -1 will forward inbound messages received using the
secondary IP address of the Ethernet connection, to the
designated local virtual tile different from 0. Also, an out-
bound message arriving from the designated local virtual tile
different from 0, will be sent to the internet by local virtual
tile -1, using the secondary IP address of the Ethernet
connection.

At system initialization time, the saved initial state of
local virtual tile O can represent an OS that has just been
booted up, waiting for input from a remote main console,
and the saved initial state of every other virtual tile can be
idle, waiting for a message from the OS software to get
started. When the microprocessor in local virtual tile O
running the OS, arrives at an accelerated code fragment
either in a user application or in kernel code, virtual tile O
exchanges messages with other virtual tiles (e.g., virtual tile
1), thus initiating the actual hardware acceleration.

As an example of using the system, the performance
critical parts a web service (such as a stock quote service)
can be accelerated in this manner. The accelerated web
service will appear as a user program within the virtual OS,
where the user program has exclusive use of the secondary
internet connection, and therefore all legacy software over-
heads of the OS for network accesses will be bypassed and
replaced by parallel pipelined hardware serving to accelerate
the complete web service as a whole. The frequent serial-
izations due to user/kernel mode changes will be eliminated.
Hardware resources of the virtual supercomputer imple-
menting the web service can be incrementally increased or
decreased over time at a virtual tile granularity, thus meeting
cloud computing requirements.

This approach can boost performance through hardware
acceleration of critical kernel and application code frag-
ments, using a virtual supercomputer.

Some relevant difficulties of application-specific hard-
ware acceleration of operating systems (e.g., precise excep-
tions including page faults, external and timer interrupts,
privileged kernel code) were addressed in optimization 12
starting on p. 161, and optimization 13 starting on p. 166 of
[Supercomputer]. Le., it is possible to achieve hardware
acceleration and yet retain binary compatibility with the
original commodity OS software.

4. Alternative Physical Tile Replacement Algorithms for
the Monitor Unit

The baseline version of the monitor unit runs a relatively
simple physical tile replacement algorithm (the Least
Recently Used algorithm). It is possible for the monitor unit
to boost system performance, if it deploys a more advanced
physical tile replacement algorithm.

As a more general replacement policy, each physical tile
can be assigned a heuristic evaluation which is the weighted
sum of a number of attributes of the physical tile, the virtual
tile to be allocated to the physical tile, and several other
system attributes. The physical tile which gets the highest

5

20

30

35

40

45

55

48

heuristic evaluation is defined to be the best physical tile to
replace.

An example of a monitoring algorithm is shown below.
Upon a request for a replacement tile,

The heuristic evaluation for each physical tile is computed

in parallel, as resources permit.

The index of the monitored physical tile with the best
evaluation is computed. This can be done within O(log,
(N)) stages for N physical tiles, with an “index of
maximum element” tree circuit where each tree node
computes the function f: F((il,vall), (i2,val2))=
(vall<val2? (i2,val2): (il,vall)). The tree computation
will yield the final pair (i,val) where i is the index of an
physical tile with the highest heuristic evaluation, equal
to val.

The index of a physical tile which gave the highest
heuristic evaluation in the previous step is returned as
the tile to be replaced/preempted.

Several alternatives for speeding up the parallel imple-

mentation exist. For example:

To handle requests for tiles to pre-empt that occur very
frequently, the calculation of the heuristic values can be
shared by k back to back requests. The first request
causes the indices of the un-monitored physical tiles to
be sorted by their heuristic evaluation. The first request
among k requests can return the tile with the highest
evaluation, the next request can the return the next best,
and so on. After k requests are received or after a time
interval has elapsed, whichever occurs earlier, the heu-
ristic evaluations are re-computed and the next set of k
requests are serviced in the same manner.

To cut the network latency to reach the monitor unit,
multiple redundant copies of the monitor unit can be
distributed in the system.

With certain virtual tiles, such as those requiring an ASIC,
given a virtual tile v, only a subset of the physical tiles
are eligible to accommodate it. In this case, the heu-
ristic evaluations should be limited to the eligible
physical tiles only.

The physical tiles can be partitioned, and different moni-
tor units can be restricted to choose a physical tile only
among one partition of the physical tiles. This will
allow the monitor unit for each partition to work
independently and in parallel.

The heuristic evaluations of each potential replacement
tile can be based on the weighted sum of numerical mea-
surements representative of the following features:

Reducing the Communication Latency Among the Virtual
Tiles of Hardware Accelerated Applications:

Every (application, virtual supercomputer) pair has a
working set of one or more virtual tiles. In order to decrease
the communication latency among the virtual tiles in a
working set, the following rules should be applied. (i)
Allocation of the first virtual tile: A set of physical tiles
which are close together, with about the size of the working
set (obtained by profiling earlier executions of the same
application) will be reserved for this (application, virtual
supercomputer) pair, if possible. The first virtual tile will
preferably be allocated to a physical tile within the reserved
set. (ii) Allocation of a virtual tile during normal operation:
The virtual tile will be preferably be assigned to a physical
tile within the reserved set, which is close to the physical
tiles presently belonging to the same virtual supercomputer.

Implementation of More Advanced Replacement Policies:

Based on the status update messages coming from the
physical tiles, the monitor unit should continue to use the
true LRU replacement policy when it works well. With

US 9,465,632 B2

49

dedicated hardware support the monitor unit can also use
alternative replacement policies such as Least Frequently
Used, and can switch to defensive replacement policies
resilient to low reuse, when tile thrashing/low reuse is
detected.

Re-Using of Physical Tiles:

It is possible to avoid the reconfiguration overhead of
physical tiles. A virtual tile’s state is composed of the
configuration state (which specifies the function of the
virtual tile) and the memory state (which is the current
execution state including registers and SRAMs). Whenever
a new virtual tile needs to be allocated, the Monitor unit
should choose a physical tile that has already been config-
ured with the configuration state of the new virtual tile.

Honoring Service Level Agreements (SLAs):

The monitor can differentiate the hardware accelerated
applications based on their service level agreements. A
physical tile that has been allocated to a virtual tile of an
application with a “gold customer” SLA should have a less
chance of being deallocated when it compares to the one that
has been used by a virtual tile of an application with a “silver
customer” or “bronze customer” SLLA. More complex SLA
rules, such as one involving monetary penalties for various
levels of performance degradation can also be factored into
the heuristic evaluation calculation, in an attempt to mini-
mize losses to the data center operator.

Other optimizations, such as:

Stopping physical tiles that have exceeded an energy
budget and allowing them to cool off before being
eligible to run a virtual tile again;

Stopping an entire virtual supercomputer to reduce con-
tention and restarting it later when the contention has
subsided;

as well as several other operating system or hypervisor
scheduling techniques can be implemented with parallel
hardware, with appropriate design changes in the monitor
unit and owner units.

5. Avoiding Data Copying During Virtual Tile Migration

Notice that, following the non-virtual supercomputer
design within [Supercomputer], the DRAM memory
accesses done by a virtual tile (i.e., a design partition of the
original non-virtual supercomputer) are always sent to the
local DRAM unit near that virtual tile. A virtual supercom-
puter thus handles its own low-level DRAM data sharing
among virtual tiles, e.g., memory coherence, through appli-
cation communication messages sent between the virtual
tiles. It is clear that the virtual tile state to be saved includes
registers and SRAMs of the virtual tile, defining the current
execution state of the virtual tile, and the configuration
memory, defining the function of the virtual tile. The virtual
tile execution state also includes the data structures in the
local DRAM unit of the virtual tile. Local data structures can
be read from an area within the local DRAM near the old
physical tile where the virtual tile was, saved in hypervisor
storage, and later restored from hypervisor storage to an area
within the local DRAM near the new physical tile. Appro-
priate memory protection of one virtual supercomputer from
another (such as a memory area range check) must be
enforced. This approach will accurately reproduce the
behavior of the original non-virtual supercomputer on a
hypervisor system. When tile migrations occur infrequently,
this state copying approach is simple and has high perfor-
mance as well, since the physical tile will always remain
near the DRAM unit it needs to access.

But, if state saving and restoring is too slow for data
structures in DRAM, the DRAM resources in the hypervisor
system can be consolidated as a single system-wide bank-

10

15

20

25

30

35

40

45

50

55

60

65

50

interleaved shared memory. In this case, when a virtual tile
vl accesses DRAM, it will access the fixed memory area
within the entire hypervisor system reserved for “the local
DRAM of v1” (preferably in the DRAM unit near the first
physical tile where v1 is allocated). When v1 is deallocated
from a physical tile and later allocated to a different physical
tile, the state of the “local DRAM of v1” memory altered by
the first physical tile must be made available to the second
physical tile where v1 is migrated, but the DRAM state need
not be copied. The virtual tile will continue to access the
same DRAM memory area from its new physical tile. In this
case, reducing the distance between a physical tile and the
DRAM units it needs to access, will be one of the heuristics
used by the monitor.

6. Isolation Between Different (Application, Virtual
Supercomputer) Pairs

In the main design of this document, we always treated a
virtual tile as a pair (application id, local virtual tile number
within this application’s virtual supercomputer) so that
messages from all virtual supercomputers could be routed in
a uniform way. In order to enhance security, the application
id part of the pair forming a virtual tile should not be written
or read by the virtual supercomputer at all. The virtual
supercomputer must communicate only with the virtual tiles
of the same virtual supercomputer. This can be done by
creating a wrapper module called an inner physical tile
harness around the virtual tile within the physical tile, which
cannot be accessed by the virtual tile except by pre-com-
munication messages. The inner physical tile harness con-
tains the application id register. Upon reset, the application
id register of a normal physical tile is set to NULL. When a
write_state request arrives at the physical tile, the applica-
tion id register is also written from the “application id” part
inside the state data being written. When an inbound pre-
communication message arrives at the physical tile, the
application id part of each global virtual tile field is verified
to be equal to the application id register, and then removed
to leave only the local virtual tile number. For outbound
pre-communication messages, the application id is pre-
pended to each of the local virtual tile number fields of the
message coming out of the virtual tile.

Actually, to implement an inner physical tile harness, only
a map from local virtual tile numbers within a virtual
supercomputer to global virtual tile numbers encompassing
all virtual tiles of all virtual supercomputers, and an inverse
map for the same, is sufficient.

For example, alternatively, assuming the local virtual tiles
of a virtual supercomputer are mapped to a contiguous area
of the global virtual tile space, where the areas of different
virtual supercomputers do not overlap, a unique virtual tile
base register can be used in lieu of the application id register,
where the virtual tile base is subtracted from the global
virtual tile to obtain the corresponding local virtual tile when
receiving an inbound pre-communication message, and
where the virtual tile base is added to a local virtual tile to
obtain a global virtual tile when sending an outbound
pre-communication message. The virtual tile base register
will be rewritten during each write_state request.

Please also see the next section, regarding how each
user-level software application running on a host machine
can be constrained by its OS, to exchange messages only
with the local virtual tiles of its own virtual supercomputer.

7. Starting and Ending Virtual Supercomputer Execution

Notice that we did not mention how to insert a (software
application, virtual supercomputer) pair into the hypervisor
system, or how to remove a (software application, virtual
supercomputer) pair from the hypervisor system. Thus, the

US 9,465,632 B2

51

system so far described is suitable for a continuously run-
ning cloud computing system with a fixed set of “approved”
(application, virtual supercomputer) pairs.

Here, will describe a method for the creation of new
(application, virtual supercomputer) pairs in the hypervisor
system, and the destruction of such pairs.

For reducing the security risks in hardware designs (see,
e.g., [23]) we recommend creating cryptographically signed
initial states of virtual tiles that are generated using autho-
rized tools, and registering the initial states of all virtual tiles
of all virtual supercomputers before they are used. Regis-
tering a virtual tile means: checking the signature validity of
the initial state of a virtual tile and moving that initial state
to the hypervisor storage.

A distinguished application and its virtual supercomputer
called the supervisor will be introduced here. The supervisor
application is privileged: the supervisor application does not
have virtual tiles in its virtual supercomputer other the
virtual tile -1, but can exchange messages with any virtual
tile of any virtual supercomputer. The inner tile harness
protection is disabled for the supervisor. The registration of
a new virtual supercomputer is done using a dedicated PCI
Express connection to a secure host computer, or an
encrypted Internet connection to a trusted remote server.
Registration consists of inserting the clean initial state of
each virtual tile v of each newly introduced virtual super-
computer in the hypervisor storage, by sending the follow-
ing messages from tile -1 of the supervisor virtual super-
computer, over the outbound pre-communication network:

Send Request (outbound pre-communication):
Opcode=communicate Vdest=(virtual destination
tile=v) Vsource=(supervisor virtual tile —1) Payload=
(Opcode=register Tilestate=(virtual tile v’s initial con-
tents))

At system initialization time, virtual tile -1 of the super-
visor supercomputer, pinned in a physical tile and serving as
a message exchange gateway with the trusted server, will
attempt to send a message to virtual tile v of the application.
Since the destination virtual tile is initially not allocated in
a physical tile, a local first level cache miss will occur in the
supervisor virtual tile —1’s physical tile harness. In this case,
the physical tile harness of supervisor virtual tile -1 will
recognize that (i) it is running the supervisor and that (ii) the
“register” opcode is present in the message payload, and will
forward the entire “register” message over the lookup net-
work to the correct owner of virtual tile v, as follows:

Send Request (lookup): Source=(pO=physical tile of
supervisor virtual tile —1) Tag=(tO=new tag) Dest=
(owner of virtual tile v) Opcode=register Tilestate=
(virtual tile v’s initial state)

Virtual tile v’s owner unit will respond to the register

request by:

Writing the given virtual tile contents to storage (using the
allocation/deallocation FSM within the same owner
unit) as the clean read-only copy of the initial state of
the virtual tile; and

Sending back an acknowledgment to the physical tile
harness of supervisor virtual tile —1:

Send Response (lookup): Source=(same source as in
the request p0) Tag=(same tag as in the request=t0)
Opcode=acknowledge

without further action.

Upon receiving the acknowledgement from the owner of
v, the supervisor physical tile harness will have completed
the registration operation. Then, an acknowledgement mes-

10

15

20

25

30

35

40

45

50

55

60

52

sage is looped back to the physical tile containing the
supervisor virtual —1 from its physical tile harness as fol-
lows:

Send Request (inbound pre-communication):

Opcode=communicate Vdest=(supervisor virtual tile
-1) Vsource=(supervisor virtual tile -1) Payload=
(Opcode=acknowledge)

The supervisor can consider the registration complete if
and when it receives acknowledgements for each register
request. As a result of registering, clean read-only copies of
the initial state of virtual tiles will already exist in the
hypervisor storage when any (application, virtual supercom-
puter) pair is started for the first time. The initial contents of
a virtual tile implemented through a union chip ASIC
physical tile, will be the configuration memory contents of
the physical tile. If the physical tile is implemented with an
FPGA, the initial state will be an FPGA configuration
bitstream.

It makes sense to store only one copy of the initial state
of virtual tiles of a given application, even though there may
be multiple instances of the application running in the
hypervisor system at a given time. For this purpose, it
suffices to create a simple function to extract the application
id for instance 0 of a given application, given the application
id of any instance n of the same application. For example,
the instance id may be the low order bits of the application
id; therefore, the low order bits will be O for the case of
instance 0. The application code should not have the privi-
leges to read or write the application id field directly, it
should exchange messages only with its locally numbered
virtual tiles. To implement this constraint securely, the
application id of the application is pre-pended to each
message going from the application to the hypervisor sys-
tem, automatically by a lightweight system call for message
exchanges with the attached hypervisor system. In this
manner, an instance of an application will be constrained to
exchange messages only with the virtual tiles of its own
virtual supercomputer and will not be able see or change its
own application id.

The first time a virtual tile of a given (application, virtual
supercomputer) is allocated in a physical tile, the writable
state of the virtual tile will be missing. In this case, the
allocation/deallocation FSM within the owner unit will
create the initial writable state for this virtual tile of this
instance of the application, by copying the configuration
information from the clean read-only state of this virtual tile
for instance O of the same application, and setting the
writable part (registers, memories) of the virtual tile state to
default initial values. Therefore, no special action is needed
for initializing the virtual tiles when an (application, virtual
supercomputer) pair starts.

However, as an (application, virtual supercomputer) pair
ends, the hypervisor resources allocated to it (physical tiles
that are still running, writable states of virtual tiles that were
saved in hypervisor storage) must be released. This can be
accomplished by issuing the following (user-level, non-
privileged) message from the software application, for each
virtual tile v of the virtual supercomputer:

Send Request (outbound pre-communication):
Opcode=communicate Vdest=(virtual tile=v)
Vsource=(application virtual tile -1) Payload=

(Opcode=terminate)

From virtual tile -1 of the same application, just before
the software application ends (e.g., these messages can be
triggered in the software application by using an atexit call
in a UNIXT™-like system).

US 9,465,632 B2

53

The physical tile harness of the application placeholder
tile for the application understands the message contains a
terminate request, and behaves as if a local first level cache
miss occurred, for mapping virtual tile v to a physical tile,
forwarding the terminate message to the owner of virtual tile
v of the present application and instance, over the lookup
network. The owner in turn forwards the terminate request
to the allocation/deallocation FSM, which in turn checks if
the virtual tile v is allocated in a physical tile p, and if so,
issues a shutdown_and_read_state command to the physical
tile p, but discards the state. Regardless of whether virtual
tile v is allocated or not, the allocation/deallocation FSM
also deletes the writable state for the virtual tile v from
hypervisor storage, in case such a writable state record
exists. As a result, all virtual tiles of this virtual supercom-
puter will be de-allocated, and all writable tile states of this
virtual supercomputer will be deleted from hypervisor stor-
age; thus achieving the termination of the virtual supercom-
puter.

The physical tile harness of local virtual tile -1 finally
sends back an acknowledgement message corresponding to
the terminate message back to the application, in order to
assure that the software application can confirm completion
of the virtual supercomputer activities before exiting from
its process.

8. Heterogeneous Physical Tiles

The idea of application placeholder physical tiles can be
easily generalized to N PCI Express connections supporting
M>N applications. For example when both a couple of
instances of application A and an instance of application B
are running on the same host processor and are communi-
cating with their three respective virtual supercomputers
with the same PCI Express connection, application place-
holder virtual tiles -1 for the two instances of application A
and also the application placeholder virtual tile -1 for
application B may be implemented on the single physical
tile attached to this single PCI Express connection. The
system will behave as if three application placeholder sub-
tiles have been implemented inside one single physical tile.

More generally, more than one virtual tile can be allocated
inside sub-tiles within a single physical tile.

In a hypervisor system that includes sub-tiles, the follow-
ing changes are required.

The owner data structures for mapping virtual tiles to
physical tiles, and local caches within physical tile har-
nesses, will become mappings from virtual tiles to (physical
tile, sub-tile) pairs. The monitor will supply (physical tile,
sub-tile) pairs to preempt. The physical tile source and
destination fields within messages will also be changed to
pairs of the form (physical tile, sub-tile). However, routing
from physical tile harnesses and to physical tile harnesses
(e.g. within the communication, control and lookup net-
works) routing will still be done based on the physical tile
portion of the (physical tile, sub-tile) pairs. Once an inbound
message going to a (physical tile, sub-tile) enters the physi-
cal tile harness, and then reaches the inbound pre-commu-
nication channel, or the pre-control channel, the sub-tile part
of the destination must be retained in the message for
internal routing purposes within the physical tile, until the
specified destination sub-tile within the physical tile is
reached. Inner tile harnesses for hiding the application id
register from the virtual tile are still needed for each sub-tile
for security, but will now be called inner sub-tile harnesses.

Sub-tile addressing allows flexible allocation of virtual
tiles to hardware resources if, for example, sub-tiles are
composed of one or more contiguous hardware blocks of
minimum size. For example, assuming a physical tile has 8

10

15

20

25

30

35

40

45

50

55

60

65

54

minimal sized blocks and sufficient reconfiguration capabil-
ity, 8 sub-tiles of 1 block each (starting at blocks 0, 1, 2, 3,
4,5, 6,7), 4 sub-tiles of 2 blocks each (starting at blocks O,
2,4, 6), 2 sub-tiles of 4 blocks each (starting at blocks 0 and
4), or 1 sub-tile of 8 blocks (starting at 0), are some
possibilities which can be implemented within this physical
tile, using algorithms resembling the dynamic allocation of
memory blocks.

Having heterogeneous physical sub-tiles in the platform
requires that the monitor unit be modified to apply a match-
ing filter to all physical sub-tiles before they are evaluated in
terms of other possible criteria. That is, the matching filter
shall mark a physical sub-tile as feasible if and only if it has
the required resources to contain the virtual tile. Then, the
monitor unit shall use only the feasible physical sub-tiles in
the physical sub-tile replacement algorithm.

9. Increased Reliability

Hardware reliability is becoming an increasingly impor-
tant issue, due to increased vulnerability to particle-induced
soft errors and intermittent timing faults due to aging effects
and voltage droop. Similarly, persistent timing faults caused
by manufacturing variability and hard errors due to wear-out
are becoming increasingly common. The proposed approach
for virtualizing application-specific supercomputers pro-
vides numerous opportunities for improved fault detection
and fault recovery.

The hypervisor system itself is a mainly manual hardware
design consisting of components (mostly FSMs) and net-
works (such as butterfly and hypercube networks). The
physical tile is not a simple FSM, it is in fact the most
complex component of the hypervisor. Each physical tile in
turn contains internal components and networks; but the
physical tile will usually be generated by a compiler from
sequential code [Supercomputer]. In both the compiler-
generated and manual hardware designs, the techniques to
achieve reliability are similar. We will review some of the
techniques for achieving reliability here, with a sufficient
level of detail, so that the integration of each of these
reliability techniques in a compiler algorithm for generating
hardware from sequential code, also becomes clear.

First, to achieve the detection of and recovery from soft
errors, it is desirable to have a checkpoint-restart mechanism
to be able to retry the hardware execution of a code
fragment, when a potential soft error is detected in the code
fragment. Here is a speculation/retry model for an operation
x,MEM)=f(x, MEM) (where f is either a simple operation,
or a complex function call, or an inner loop nest in the region
hierarchy of the program), which reads a memory MEM and
a register X, and then writes the same memory MEM and
register x. To be able to retry f, we must first identify the
memories and registers that are live at the retry point at the
beginning of the invocation of f (register x and memory
MEM in this case), and revise f to make it f_speculative, to
ensure the only the new versions of such memories and
registers are written, so that the original memory and register
inputs to f are not clobbered when a soft error is detected
and a retry occurs. When a soft error is detected (e.g. a
mismatch is detected during a dual modular redundancy run
of f_speculative, or an unrecoverable ECC error occurs
during f_speculative) the f_ speculative invocation imme-
diately returns with a condition code cc that is false, other-
wise it returns with a condition code cc that is true, with the
results in X' and MEM'. If there is any error (cc is false), the
speculative code fragment should be retried, if not, the
results of the speculative code fragment should be commit-
ted, while still checking them for integrity/ECC errors.

US 9,465,632 B2

55

//SPECULATION/RETRY MODEL FOR SOFT ERRORS
/foriginal code:
//x,MEM=f(x, MEM)
errCnt=MAX_ERRORS;
retry:
//x live here
//MEM live here
link MEM'=MEM,; //acquire a new memory
ce,x,MEM'=f_ speculative(x, MEM");
/fee is false if soft error detected
if(ce) {
//mo soft errors detected
//commit results
x=x"; unlink MEM=MEM;
}else {
if(——errCnt >=0)
//discard the state and retry
{unlink NULL=MEM;goto retry;}
else
//too many failures, die
{unlink NULL=MEM; error();}

The baseline hardware acceleration of a software appli-
cation in [Supercomputer| already works like the specula-
tion/retry model given above at a very coarse grain, where
the function f is the entire accelerated code fragment. The
application-specific supercomputer has a large DRAM
memory serving as a last level cache (the application address
space is the root of the memory hierarchy). The modified
lines of this last level cache are not written back to the
software application memory until the end of the accelerated
program fragment, at which point a “flush all dirty lines”
request is issued by the accelerator. For an accelerator with
dual modular redundancy and ECC in its last level cache, if
a comparison mismatch or an unrecoverable ECC error is
detected before reaching the point of flushing the dirty lines
in the last level cache, it is possible to recover from the
potential soft error by just discarding the accelerator state
and restarting the entire accelerated code fragment from the
beginning. The final commit operation (since it is not inside
yet another checking harness) can be implemented with
triple modular redundancy. The ECC of the results being
committed to the application memory address space can be
checked, and the data can be corrected if possible. If an
unrecoverable ECC error occurs during the final committing
of results, or if there are too many unsuccessful retries, the
result will be a fatal error that should be reported from the
virtual supercomputer to the software application, which
should revert to software-only execution (the original soft-
ware code will still be around). However, the offending
physical tile and offending DRAM resources should be
avoided in future runs.

In case a soft error is highly probable during a long-
running accelerated code fragment, sub-regions smaller than
the entire accelerated code fragment in the program region
hierarchy can be speculatively executed by following the
recipe in the speculation/retry model for soft errors given
above.

The conventional approach for fault detection is to rep-
licate hardware and compare the results (dual-modular
redundancy). This approach can be realized by building
redundancy into the FSM when creating the FSM. While a
register to register operation is executed in duplicate, the two
copies of each of the input operands should be verified to be
equal. The FSM state transition logic should similarly be
duplicated and at the beginning of each cycle/state the two
copies of condition codes and state registers should be
verified to be equal. ECC or parity should be generated and

10

15

20

40

45

56

checked during memory operations. Checksums or other
redundancy techniques can be used during network message
transmissions.

A cheaper alternative technique is to use modulo N
arithmetic (for a small N) for checking individual operations
instead of full dual modular redundancy. If profiling data
from a soft error simulation is available, checking logic can
be implemented for the registers, functional units and FSM
state transitions that are most prone to soft errors until an
area budget reserved for reliability is exceeded.

Since the virtualized hardware is usually generated auto-
matically from a high-level specification such as sequential
code, further optimizations to reduce checking logic are also
possible. Simplified versions of the hardware can be instan-
tiated to check certain invariant properties of the physical
tile’s operation. These invariants can be explicitly provided
by the programmer in the original code (programmer asser-
tions often offer an independent check for results), or that
can be inferred from the sequential code, for example by
selecting a few among the assertions automatically gener-
ated by symbolic execution [Supercomputer]. For example,
in the above speculation/retry model example, the f com-
putation can be a sorting algorithm (without dual modular
redundancy), and the verification computation can be a
check that a random subsequence of the array is ordered. If
this simple check fails, the sorting routine is retried; but if
it succeeds, the state changes produced by the sorting routine
are committed.

The probability of failure throughout the system can also
be minimized by conventional circuit-level hardening (for
soft errors), and wear-leveling (for aging-induced transient
and permanent failures).

An end-to-end checksum is often a more hardware-
efficient technique for networks. When a message with a
wrong checksum arrives into any FSM, a speculation failure
action may be performed.

Permanent failures in the network can also be detected,
and can be rectified by disabling failed nodes and reconfig-
uring the packet routing logic to avoid such nodes. This is
only possible with network topologies that provide path
redundancy (i.e. more than one possible route from each
source to each destination).

The invention has been shown and described with refer-
ence to a particular preferred embodiment. However, it is to
be understood that the invention is not limited to that
particular embodiment, and that various modifications, addi-
tions and alterations may be made to the invention by one
skilled in the art without departing from the spirit and scope
of the invention.

What is claimed is:

1. A hypervisor system for virtualizing application-spe-

cific supercomputers, the system comprising:

(a) at least one software-virtual hardware pair consisting
of a software application, and an application-specific
virtual supercomputer for accelerating the software
application, where:

i. the application-specific virtual supercomputer com-
prises a plurality of virtual tiles; and

ii. the software application and the virtual tiles com-
municate among themselves with messages;

(b) a plurality of reconfigurable physical tiles, where each
virtual tile of each application-specific virtual super-
computer can be implemented on at least one recon-
figurable physical tile, by configuring the reconfigu-
rable physical tile to perform the virtual tile’s function;
and

US 9,465,632 B2

57

(c) a scheduler consisting of a plurality of interconnected
special-purpose hardware components, communicating
and synchronizing to perform parallel pre-emptive
scheduling of the virtual tiles on the reconfigurable
physical tiles;
where none among the plurality of interconnected

special-purpose hardware components of the sched-
uler is a processor executing software instructions;
and
where the plurality of interconnected special-purpose
hardware components of the scheduler includes two
or more owner units for managing virtual tiles,
where each virtual tile is assigned to exactly one
owner unit and where at least one virtual tile is
assigned to each owner unit; and
where the parallel pre-emptive scheduling of the virtual
tiles on the reconfigurable physical tiles comprises:
simultaneously performing by each owner unit:
pre-empting a virtual tile vl assigned to v1’s
respective owner unit and operating on a recon-
figurable physical tile p1, where said pre-empt-
ing is done by v1’s respective owner unit;
letting v1 remain pre-empted for a period of time,
by v1’s respective owner unit;
receiving at v1’s respective owner unit, from a
virtual tile vO operating on a reconfigurable
physical tile p0, an indication of an attempt to
send a communication message from vO to the
pre-empted virtual tile v1; and
in response to said indication, resuming operation
of vl on a reconfigurable physical tile p2, by
v1’s respective owner unit, where p2 is deter-
mined based on statistics collected from the
hypervisor system and is not necessarily the
same as pl, and enabling delivery of the com-
munication message directly from p0 to p2;
where said simultaneous performance by owner
units is subject to resource constraints and depen-
dency constraints.

2. A method for automatically converting a single-
threaded software application into a software-virtual hard-
ware pair consisting of a software application and an appli-
cation-specific virtual supercomputer, integrated into a
hypervisor system for virtualizing application specific super-
computers, where the method comprises:

(a) automatically converting a code fragment from the
single-threaded software application into customized
non-virtual supercomputer hardware, whose hardware
execution is functionally equivalent to software execu-
tion of the code fragment;

(b) generating interfaces on hardware and software parts
of the single-threaded software application, where the
interfaces, at run time:

i. perform a software-to-hardware program state trans-
fer upon entry to the code fragment;

ii. perform a hardware-to-software program state trans-
fer upon exit from the code fragment; and

ili. maintain memory coherence between software and
hardware memories of the single threaded software
application;

(c) partitioning the customized non-virtual supercomputer
hardware obtained in steps (a) and (b) into multiple
modules;

(d) creating a union module which is capable of realizing
any of the modules created by step (c) depending on
configuration parameters provided to the union mod-
ule;

10

15

58

(e) creating a software-virtual hardware pair consisting of
a software application and an application-specific vir-
tual supercomputer, where:

i. the software application part of the software-virtual
hardware pair is the single-threaded software appli-
cation as modified in step (b);

ii. the application-specific virtual supercomputer part of
the software-virtual hardware pair consists of virtual
tiles, each of which is a module obtained in step (c);

(1) adding functionality to stop, start, read internal state of,
and write internal state of the union module of step (d);
to create a reconfigurable physical tile capable of
realizing any among the virtual tiles of step (e); and

(g) integrating at least one copy of the reconfigurable
physical tile obtained in step (f) within the hypervisor
system, to realize the software-virtual hardware pair
consisting of the software application and the applica-
tion-specific virtual supercomputer, within the hyper-
visor system,

20 where the hypervisor system comprises:

25

30

35

40

45

50

55

60

(h) at least one software-virtual hardware pair consisting
of a software application, and an application-specific
virtual supercomputer for accelerating the software
application, where:

i. the application-specific virtual supercomputer com-
prises one or more virtual tiles; and

ii. the software application and the virtual tiles com-
municate among themselves with messages;

(1) one or more reconfigurable physical tiles, where each
virtual tile of each application-specific virtual super-
computer can be implemented on at least one recon-
figurable physical tile, by configuring the reconfigu-
rable physical tile to perform the virtual tile’s function;
and

(j) a scheduler implemented substantially in hardware, for
parallel pre-emptive scheduling of the virtual tiles on
the reconfigurable physical tiles.

3. A hypervisor system for virtualizing application-spe-

cific supercomputers, the system comprising:

(a) at least one software-virtual hardware pair consisting
of a software application, and an application-specific
virtual supercomputer for accelerating the software
application, where:

i. the application-specific virtual supercomputer com-
prises one or more virtual tiles; and

ii. the software application and the virtual tiles com-
municate among themselves with messages;

(b) one or more reconfigurable physical tiles, where each
virtual tile of each application-specific virtual super-
computer can be implemented on at least one recon-
figurable physical tile, by configuring the reconfigu-
rable physical tile to perform the virtual tile’s function;
and

(c) a scheduler implemented substantially in hardware, for
parallel pre-emptive scheduling of the virtual tiles on
the reconfigurable physical tiles;

(d) a table mapping each virtual tile
i. to NULL, if the virtual tile is not currently contained

in any reconfigurable physical tile;
ii. to reconfigurable physical tile the virtual tile is
currently contained in, otherwise;

(e) a first level cache for the table near each reconfigurable
physical tile, mapping message destination virtual tiles
to message destination reconfigurable physical tiles,
such that when sending a message from a message
source virtual tile vO contained in a message source
reconfigurable physical tile p0, to a message destina-

US 9,465,632 B2

59

tion virtual tile v contained in a message destination

reconfigurable physical tile p:

the message source reconfigurable physical tile pO
containing the message source virtual tile vO
can send a message directly and efficiently to

the message destination reconfigurable physical tile p
containing the message destination virtual tile v

by
adding a field containing p to the message as it leaves

the source virtual tile vO contained in p0,

using the p field for routing the message toward the
destination virtual tile v contained in p, through a
scalable network, and

reverting the message back to its original form when
the destination virtual tile is reached,

whenever v is found to be mapped to p in the first level
cache near the message source reconfigurable physical
tile pO0.

4. The hypervisor system of claim 3, further comprising:

(f) a monitor unit for implementing a tile replacement
policy, by:

i. collecting statistics from reconfigurable physical
tiles;

ii. analyzing the statistics; and

iii. when any request arrives at the monitor unit for a
reconfigurable physical tile to replace, responding
with the best reconfigurable physical tile to replace
based on the tile replacement policy.

5. The hypervisor system of claim 4, further comprising:
(g) a plurality of owner units each responsible for search-
ing a part of the table of (d), where the parts do not
overlap and together constitute the entire table, such
that when a message source reconfigurable physical tile

pO fails to find a message destination virtual tile v in a

first level cache near p0, an owner unit 00 responsible

for v searches for v in 00’s part of the table in order to
resolve the first level cache miss, as follows:

i. if the owner unit 00 finds virtual tile v to be mapped
to a reconfigurable physical tile p in 00’s part of the
table:

1. first level cache near the message source recon-
figurable physical tile p0 is updated to include a (v
to p) mapping;

2. message is delivered directly from the message
source reconfigurable physical tile pO to the mes-
sage destination reconfigurable physical tile p
containing the message destination virtual tile v;

ii. otherwise, if the owner unit 00 cannot find virtual tile
v in 00’s part of the table:

1. the owner unit 00 asks the monitor unit of (f) for
a reconfigurable physical tile to replace;

2. if a reconfigurable physical tile p supplied by the
monitor unit is already occupied by another virtual
tile v', the owner unit 00 requests an owner unit ol
responsible for v":

a. to invalidate all first level cache entries in the
hypervisor system containing a (v' to p) map-
ping; and

b. to stop the reconfigurable physical tile p and
save state of the virtual tile v' contained in p;

c. to remove the (v' to p) mapping from ol’s part
of the table;

3. the owner unit 00 inserts a (v to p) mapping in 00’s
part of the table;

4. the owner unit o0 writes last saved state of the
virtual tile v into the reconfigurable physical tile p
and restarts v where it left off;

10

15

20

25

30

35

40

45

55

60

65

60

5. first level cache near the message source recon-
figurable physical tile p0 is updated to include the
(v to p) mapping;

6. message is delivered directly from the message
source reconfigurable physical tile pO to the mes-
sage destination reconfigurable physical tile p
containing the message destination virtual tile v.

6. The hypervisor system of claim 5, further comprising
a means for ensuring that given any two virtual tiles v1 and
v2, messages from the virtual tile v1 to the virtual tile v2 are
not reordered during parallel operation.

7. The hypervisor system of claim 5, further comprising
a means for ensuring that messages are not lost: given two
virtual tiles v1 and v2, whenever a message is sent from the
virtual tile v1 to the virtual tile v2, the message is always
delivered to the virtual tile v2 during parallel operation.

8. The hypervisor system of claim 5, where coherence
among the table of (d) and the first level caches near the
reconfigurable physical tiles of (e) is accomplished using
directory-based cache coherence; such that coherence mes-
saging overhead is reduced.

9. The hypervisor system of claim 5, where the monitor
unit of (f) implements a tile replacement policy complying
with Service Level Agreements.

10. An adaptive method for allocating resources to ASIC
reconfigurable physical tiles in a hypervisor system for
virtualizing application specific supercomputers, the method
comprising:

(a) determining frequency of use of each software-virtual
hardware pair consisting of a software application and
an application-specific virtual supercomputer in the
hypervisor system, over a recent time interval;

(b) searching for a software-virtual hardware pair con-
sisting of a software application and an application-
specific virtual supercomputer in the hypervisor sys-
tem, where the software-virtual hardware pair has
greatest frequency of use as determined in step (a), such
that:

i. the software-virtual hardware pair is not already
mapped to an ASIC reconfigurable physical tile; and

ii. frequency of use of the software-virtual hardware
pair exceeds a threshold;

(c) if such a software-virtual hardware pair could be found
in the hypervisor system in step (b), creating a new
ASIC reconfigurable physical tile for this software-
virtual hardware pair;

(d) for each ASIC reconfigurable physical tile in the
hypervisor system:

i. increasing or decreasing resources allocated to this
ASIC reconfigurable physical tile, in order to make
allocated resources proportional to average fre-
quency of use of software-virtual hardware pair
consisting of a software application and an applica-
tion-specific virtual supercomputer, implemented by
this ASIC reconfigurable physical tile;

(e) repeating all of the steps (a)-(d) above, periodically;
where the hypervisor system comprises:

(D) at least one software-virtual hardware pair consisting
of a software application, and an application-specific
virtual supercomputer for accelerating the software
application, where:

i. the application-specific virtual supercomputer com-
prises one or more virtual tiles; and

ii. the software application and the virtual tiles com-
municate among themselves with messages;

(g) one or more reconfigurable physical tiles, where each
virtual tile of each application-specific virtual super-

US 9,465,632 B2

61

computer can be implemented on at least one recon-
figurable physical tile, by configuring the reconfigu-
rable physical tile to perform the virtual tile’s function;
and

(h) a scheduler implemented substantially in hardware,
for parallel pre-emptive scheduling of the virtual tiles
on the reconfigurable physical tiles;

where at least one reconfigurable physical tile of the hyper-
visor system is an ASIC reconfigurable physical tile, which
is defined as a reconfigurable physical tile implemented in
ASIC technology, capable of realizing any one of the virtual
tiles of an application-specific virtual supercomputer, based
on configuration parameters provided to the reconfigurable
physical tile.

11. The hypervisor system of claim 1 where a software-
virtual hardware pair consisting of a software application
and an application-specific virtual supercomputer is modi-
fied to implement a hardware-accelerated virtual operating
system with external network connectivity, such that:

(d) one virtual tile in the application-specific virtual
supercomputer of the software-virtual hardware pair
comprises a general purpose microprocessor for run-
ning the hardware-accelerated virtual operating system;

(e) the remaining virtual tiles of the application-specific
virtual supercomputer of the software-virtual hardware
pair implement hardware acceleration of kernel codes
and user application codes within the hardware-accel-
erated virtual operating system, and

(f) the software application part of the software-virtual
hardware pair is replaced by a network gateway con-
necting the virtual tile containing the general purpose
microprocessor, and optionally other virtual tiles of the
application-specific virtual supercomputer, to an exter-
nal network.

12. The hypervisor system of claim 1, further comprising:

a capability to add a new software-virtual hardware pair
consisting of a software application and an application-
specific virtual supercomputer to the hypervisor system, or
to delete such a pair from the hypervisor system.

13. The hypervisor system of claim 1, further comprising
the capability of:

(d) dividing at least one reconfigurable physical tile into

a plurality of reconfigurable physical sub-tiles of pos-
sibly unequal sizes; and

(e) during scheduling, allocating a virtual tile to a recon-
figurable physical sub-tile that is large enough to
accommodate the virtual tile;

for improving utilization of reconfigurable physical tiles.

14. The hypervisor system of claim 1, further comprising
a capability to restrict each virtual tile within a software-
virtual hardware pair consisting of a software application
and an application-specific virtual supercomputer, to com-
municate only with other virtual tiles of the same applica-
tion-specific virtual supercomputer and with the software
application of the software-virtual hardware pair, for achiev-
ing isolation of software-virtual hardware pairs within the
hypervisor system from one another.

15. The method of claim 2, further comprising the step:
while creating a virtual supercomputer from a software
application of a software-virtual hardware pair, synthesizing

10

15

20

25

30

35

40

45

50

55

62

custom redundant checking circuits, such that reliability of
reconfigurable physical tiles realizing virtual tiles of the
application-specific virtual supercomputer is increased.

16. A hypervisor system for virtualizing application-

specific supercomputers, the system comprising:

(a) at least one software-virtual hardware pair consisting
of a software application, and an application-specific
virtual supercomputer for accelerating the software
application, where:

i. the application-specific virtual supercomputer com-
prises a plurality of virtual tiles; and

ii. the software application and the virtual tiles com-
municate among themselves with messages;

(b) a plurality of reconfigurable physical tiles, where each
virtual tile of each application-specific virtual super-
computer can be implemented on at least one recon-
figurable physical tile, by configuring the reconfigu-
rable physical tile to perform the virtual tile’s function;
and

(c) means for parallel pre-emptive scheduling of the
virtual tiles on the reconfigurable physical tiles,
where a scheduler consists of a plurality of means for

communicating and synchronizing to perform paral-
lel pre-emptive scheduling of the virtual tiles on the
reconfigurable physical tiles; and
where the plurality of means for communicating and
synchronizing to perform parallel pre-emptive
scheduling of the virtual tiles on physical tiles
includes two or more owner units for managing
virtual tiles, where each virtual tile is assigned to
exactly one owner unit and where at least one virtual
tile is assigned to each owner unit; and
where the parallel pre-emptive scheduling of the virtual
tiles on the reconfigurable physical tiles comprises:
simultaneously performing by each owner unit:
pre-empting a virtual tile vl assigned to v1’s
respective owner unit and operating on a recon-
figurable physical tile p1, where said pre-empt-
ing is done by v1’s respective owner unit;
letting v1 remain pre-empted for a period of time,
by v1’s respective owner unit;
receiving at v1’s respective owner unit, from a
virtual tile vO operating on a reconfigurable
physical tile p0, an indication of an attempt to
send a communication message from vO to the
pre-empted virtual tile v1; and
in response to said indication, resuming operation
of vl on a reconfigurable physical tile p2, by
v1’s respective owner unit, where p2 is deter-
mined based on statistics collected from the
hypervisor system and is not necessarily the
same as pl, and enabling delivery of the com-
munication message directly from p0 to p2;
where said simultancous performance by owner
units is subject to resource constraints and depen-
dency constraints.

#* #* #* #* #*

